Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 151273, 10 pages
http://dx.doi.org/10.1155/2013/151273
Research Article

- -Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

1Research and Development Division, RA Chem Pharma Limited, Prasanth Nagar, Hyderabad 500072, India
2Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India

Received 10 June 2012; Revised 17 August 2012; Accepted 21 August 2012

Academic Editor: Antonio Romerosa

Copyright © 2013 K. Ravi Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Evans, C. E. Sacks, W. A. Kleschick, and T. R. Taber, “Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187,” Journal of the American Chemical Society, vol. 101, no. 22, pp. 6789–6791, 1979. View at Google Scholar · View at Scopus
  2. M. Yamato, “Study on the development of biological-active compounds after the model of natural products,” Journal of the Pharmaceutical Society of Japan, vol. 112, no. 2, pp. 81–99, 1992. View at Google Scholar
  3. X. Song, B. S. Vig, P. L. Lorenzi, J. C. Drach, L. B. Townsend, and G. L. Amidon, “Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1- (β-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter,” Journal of Medicinal Chemistry, vol. 48, no. 4, pp. 1274–1277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Kumar, M. R. Jacob, M. B. Reynolds, and S. M. Kerwin, “Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1,” Bioorganic and Medicinal Chemistry, vol. 10, no. 12, pp. 3997–4004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Yildiz-Oren, I. Yalcin, E. Aki-Sener, and N. Ucarturk, “Synthesis and structure-activity relationships of new antimicrobial active multisubstituted benzazole derivatives,” European Journal of Medicinal Chemistry, vol. 39, no. 3, pp. 291–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Benazzouz, T. Boraud, P. Dubedat, A. Boireau, J.-M. Stutzmann, and C. Gross, “Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study,” European Journal of Pharmacology, vol. 284, no. 3, pp. 299–307, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Figge, H. J. Altenbach, D. J. Brauer, and P. Tielmann, “Synthesis and resolution of 2-(2-diphenylphosphinyl-naphthalen-1-yl)-1-isopropyl-1H-benzoimidazole; a new atropisomeric P,N-chelating ligand for asymmetric catalysis,” Tetrahedron Asymmetry, vol. 13, no. 2, pp. 137–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. L. J. Scott, C. J. Dunn, G. Mallarkey, and M. Sharpe, “Esomeprazole: a review of its use in the management of acid-related disorders,” Drugs, vol. 62, no. 10, pp. 1503–1538, 2002. View at Google Scholar · View at Scopus
  9. H. Nakano, T. Inoue, N. Kawasaki et al., “Synthesis and biological activities of novel antiallergic agents with 5- lipoxygenase inhibiting action,” Bioorganic and Medicinal Chemistry, vol. 8, no. 2, pp. 373–380, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Zhu, B. Lippa, J. C. Drach, and L. B. Townsend, “Design, synthesis, and biological evaluation of tricyclic nucleosides (dimensional probes) as analogues of certain antiviral polyhalogenated benzimidazole ribonucleosides,” Journal of Medicinal Chemistry, vol. 43, no. 12, pp. 2430–2437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Zarrinmayeh, A. M. Nunes, P. L. Ornstein et al., “Synthesis and evaluation of a series of novel 2-[(4- chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists,” Journal of Medicinal Chemistry, vol. 41, no. 15, pp. 2709–2719, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. W. H. Chen and Y. Pang, “Efficient synthesis of 2-(2′-hydroxyphenyl)benzoxazole by palladium(II)-catalyzed oxidative cyclization,” Tetrahedron Letters, vol. 50, no. 48, pp. 6680–6683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Yadav, M. Kumar, T. Yadav, and R. Jain, “An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles,” Tetrahedron Letters, vol. 50, no. 35, pp. 5031–5034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Shen, T. Kohn, Z. Fu, X. Jiao, S. Lai, and M. Schmitt, “Synthesis of benzimidazoles from 1,1-dibromoethenes,” Tetrahedron Letters, vol. 49, no. 51, pp. 7284–7286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. G. Jacob, L. G. Dutra, C. S. Radatz, S. R. Mendes, G. Perin, and E. J. Lenardão, “Synthesis of 1,2-disubstitued benzimidazoles using SiO2/ZnCl2,” Tetrahedron Letters, vol. 50, no. 13, pp. 1495–1497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Mohammadpoor-Baltork, A. R. Khosropour, and S. F. Hojati, “ZrOCl2·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions,” Catalysis Communications, vol. 8, no. 12, pp. 1865–1870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Trivedi, S. K. De, and R. A. Gibbs, “A convenient one-pot synthesis of 2-substituted benzimidazoles,” Journal of Molecular Catalysis A, vol. 245, no. 1-2, pp. 8–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Mukhopadhyay and P. K. Tapaswi, “PEG-mediated catalyst-free expeditious synthesis of 2-substituted benzimidazoles and bis-benzimidazoles under solvent-less conditions,” Tetrahedron Letters, vol. 49, no. 43, pp. 6237–6240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. M. Heravi, S. Sadjadi, H. A. Oskooie, R. H. Shoar, and F. F. Bamoharram, “Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles,” Catalysis Communications, vol. 9, no. 4, pp. 504–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Villemin, M. Hammadi, and B. Martin, “Clay catalysis: condensation of orthoesters with O-substituted aminoaromatics into heterocycles,” Synthetic Communications, vol. 26, no. 15, pp. 2895–2899, 1996. View at Google Scholar · View at Scopus
  21. M. Doise, F. Dennin, D. Blondeau, and H. Sliwa, “Synthesis of novel heterocycles: oxazolo[4,5-b]pyridines and oxazolo[4,5-d]pyrimidines,” Tetrahedron Letters, vol. 31, no. 8, pp. 1155–1156, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. G. L. Jenkins, A. M. Knevel, and C. S. Davis, “A new synthesis of the benzothiazole and benzoxazole rings,” Journal of Organic Chemistry, vol. 26, no. 1, p. 274, 1961. View at Google Scholar · View at Scopus
  23. D. W. Hein, R. J. Alheim, and J. J. Leavitt, “The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles,” Journal of the American Chemical Society, vol. 79, no. 2, pp. 427–429, 1957. View at Google Scholar · View at Scopus
  24. P. Salehi, M. Dabiri, M. A. Zolfigol, S. Otokesh, and M. Baghbanzadeh, “Selective synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles in water at ambient temperature,” Tetrahedron Letters, vol. 47, no. 15, pp. 2557–2560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Parikh, D. Kumar, S. R. Roy, and A. K. Chakraborti, “Surfactant mediated oxygen reuptake in water for green aerobic oxidation: mass-spectrometric determination of discrete intermediates to correlate oxygen uptake with oxidation efficiency,” Chemical Communications, vol. 47, no. 6, pp. 1797–1799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. K. Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur, and S. V. Chankeshwara, “‘on water’ organic synthesis: a highly efficient and clean synthesis of 2-aryl/heteroaryl/styryl benzothiazoles and 2-alkyl/aryl alkyl benzothiazolines,” Green Chemistry, vol. 9, no. 12, pp. 1335–1340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Sadeghi and M. G. Nejad, “Silica sulfuric acid: an eco-friendly and reusable catalyst for synthesis of benzimidazole derivatives,” Journal of Chemistry, vol. 2013, Article ID 581465, 5 pages, 2013. View at Publisher · View at Google Scholar
  28. Y. H. So and J. P. Heeschen, “Mechanism of polyphosphoric acid and phosphorus pentoxide-methanesulfonic acid as synthetic reagents for benzoxazole formation,” Journal of Organic Chemistry, vol. 62, no. 11, pp. 3552–3561, 1997. View at Google Scholar · View at Scopus
  29. S. Rudrawar, A. Kondaskar, and A. K. Chakraborti, “An efficient acid- and metal-free one-pot synthesis of benzothiazoles from carboxylic acids,” Synthesis, no. 15, Article ID Z05105SS, pp. 2521–2526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. K. Chakraborti, C. Selvam, G. Kaur, and S. Bhagat, “An efficient synthesis of benzothiazoles by direct condensation of carboxylic acids with 2-aminothiophenol under microwave irradiation,” Synlett, no. 5, pp. 851–855, 2004. View at Google Scholar · View at Scopus
  31. R. Kumar, C. Selvam, G. Kaur, and A. K. Chakraborti, “Microwave-assisted direct synthesis of 2-substituted benzoxazoles from carboxylic acids under catalyst and solvent-free conditions,” Synlett, no. 9, pp. 1401–1404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Kumar, S. Rudrawar, and A. K. Chakraborti, “One-pot synthesis of 2-substituted benzoxazoles directly from carboxylic acids,” Australian Journal of Chemistry, vol. 61, no. 11, pp. 881–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. N. Nadaf, S. A. Siddiqui, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, “Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions,” Journal of Molecular Catalysis A, vol. 214, no. 1, pp. 155–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Terashima and M. A. Ishii, “A facile synthesis of 2-substituted benzoxazoles,” Synthesis, vol. 1982, pp. 484–485, 1982. View at Google Scholar
  35. A. K. Chakraborti, S. Rudrawar, G. Kaur, and L. Sharma, “An efficient conversion of phenolic esters to benzothiazoles under mild and virtually neutral conditions,” Synlett, no. 9, pp. 1533–1536, 2004. View at Google Scholar · View at Scopus
  36. B. M. Bhawal, S. P. Mayabhate, A. P. Likhite, and A. R. A. S. Deshmukh, “Use of zeolite catalysts for efficient synthesis of benzoxazoles via Beckmann rearrangement,” Synthetic Communications, vol. 25, no. 21, pp. 3315–3321, 1995. View at Google Scholar · View at Scopus
  37. Y. Chen and D. X. Zeng, “Study on photochromic diarylethene with phenolic schiff base: preparation and photochromism of diarylethene with benzoxazole,” Journal of Organic Chemistry, vol. 69, no. 15, pp. 5037–5040, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Thakuria and G. Das, “An expeditious one-pot solvent-free synthesis of benzimidazole derivatives,” Arkivoc, vol. 2008, no. 15, pp. 321–328, 2008. View at Google Scholar · View at Scopus
  39. V. S. Padalkar, V. D. Gupta, K. R. Phatangare, V. S. Patil, P. G. Umape, and N. Sekar, “Indion 190 resin: efficient, environmentally friendly, and reusable catalyst for synthesis of benzimidazoles, benzoxazoles, and benzothiazoles,” Green Chemistry Letters and Reviews, vol. 5, no. 2, pp. 139–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. R. G. Jacob, C. S. Radatz, M. B. Rodrigues et al., “Synthesis of 1-H-1,5-benzodiazepines derivatives using SiO2/ZnCl2,” Heteroatom Chemistry, vol. 22, no. 2, pp. 180–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. R. G. Lara, E. L. Borges, E. J. Lenardao, D. Alves, R. G. Jacob, and G. Perin, “Addition of thiols to phenylselenoalkynes using KF/Alumina under solvent-free conditions,” Journal of the Brazilian Chemical Society, vol. 21, pp. 2125–2129, 2010. View at Google Scholar
  42. R. G. Jacob, M. S. Silva, S. R. Mendes, E. L. Borges, E. J. Lenardao, and G. Perin, “Atom-economic synthesis of functionalized octahydroacridines from citronellal or 3-(phenylthio)-citronellal,” Synthetic Communications, vol. 39, no. 15, pp. 2747–2762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. R. Kumar, P. V. V. Satyanarayana, and B. S. Reddy, “Simple and efficient method for deprotection of tetrahydropyranyl ethers by using Silica supported sodium hydrogen sulphate,” Chinese Journal of Chemistry, vol. 30, no. 5, pp. 1189–1191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Ravi Kumar, P. V. V. Satyanarayana, and B. Srinivasa Reddy, “Simple and efficient method for tetrahydropyranylation of alcohols and phenols by using silica supported sodium hydrogen sulphate as a catalyst,” Asian Journal of Chemistry, vol. 24, no. 9, pp. 3876–3878, 2012. View at Google Scholar · View at Scopus
  45. R. K. Kumar, P. V. V. Satyanarayana, and S. B. Reddy, “NaHSO4-SiO2 promoted synthesis of Benzimidazole derivatives,” Archives of Applied Science Research, vol. 4, no. 3, pp. 1517–1521, 2012. View at Google Scholar
  46. K. R. Kumar, P. V. V. Satyanarayana, and B. Srinivasa Reddy, “Direct and practical synthesis of 2-arylbenzoxazoles promoted by silica supported sodium hydrogen sulphate,” Der Pharma Chemica, vol. 4, no. 2, pp. 761–766, 2012. View at Google Scholar · View at Scopus
  47. G. W. Breton, “Selective monoacetylation of unsymmetrical diols catalyzed by silica gel-supported sodium hydrogen sulf,” Journal of Organic Chemistry, vol. 62, p. 8952, 1997. View at Google Scholar
  48. A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O. Saidi, and J. M. J. Williams, “Synthesis of benzazoles by hydrogen-transfer catalysis,” Organic Letters, vol. 11, no. 9, pp. 2039–2042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. Sapkal, K. F. Shelke, S. S. Sonar, B. B. Shingate, and M. S. Shingare, “Acidic ionic liquid catalyzed environmentally friendly synthesis of benzimidazole derivatives,” Bulletin of the Catalysis Society of India, pp. 78–83, 2009. View at Google Scholar
  50. J. Peng, M. Ye, C. Zong et al., “Copper-catalyzed intramolecular C-N bond formation: a straightforward synthesis of benzimidazole derivatives in water,” Journal of Organic Chemistry, vol. 76, no. 2, pp. 716–719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. C. S. Cho, D. T. Kim, J. Q. Zhang, S. L. Ho, T. J. Kim, and S. C. Shim, “Tin(II) chloride-mediated synthesis of 2-substituted benzoxazoles,” Journal of Heterocyclic Chemistry, vol. 39, no. 2, pp. 421–423, 2002. View at Google Scholar · View at Scopus
  52. M. M. Guru, M. A. Ali, and T. Punniyamurthy, “Copper-mediated synthesis of substituted 2-aryl-N-benzylbenzimidazoles and 2-arylbenzoxazoles via C-H functionalization/C-N/C-O bond formation,” Journal of Organic Chemistry, vol. 76, no. 13, pp. 5295–5308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Bonnamour and C. Bolm, “Iron-catalyzed intramolecular O-arylation: synthesis of 2-aryl benzoxazoles,” Organic Letters, vol. 10, no. 13, pp. 2665–2667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Wang, Y. Zhang, P. Li, and L. Wang, “An Efficient and practical synthesis of benzoxazoles from acyl chlorides and 2-aminophenols catalyzed by Lewis acid in(OTf)3 under solvent-free reaction conditions,” Chinese Journal of Chemistry, vol. 28, no. 9, pp. 1697–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Zhang, S. Zhang, M. Liu, and J. Cheng, “Palladium-catalyzed desulfitative C-arylation of a benzo[d]oxazole C-H bond with arene sulfonyl chlorides,” Chemical Communications, vol. 47, no. 41, pp. 11522–11524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. H.-J. Lim, D. Myung, I. Y. C. Lee, and H. J. Myung, “Microwave-assisted synthesis of benzimidazoles, benzoxazoles, and benzothiazoles from resin-bound esters,” Journal of Combinatorial Chemistry, vol. 10, no. 4, pp. 501–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Praveen, A. Nandakumar, P. Dheenkumar, D. Muralidharan, and P. T. Perumal, “Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents,” Journal of Chemical Sciences, vol. 124, no. 3, pp. 609–624, 2012. View at Google Scholar · View at Scopus