Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 340230, 11 pages
http://dx.doi.org/10.1155/2013/340230
Research Article

Design, Synthesis, and Pharmacological Screening of Novel Porphyrin Derivatives

1Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
2Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC 27695, USA

Received 24 June 2012; Accepted 2 December 2012

Academic Editor: M. Akhtar Uzzaman

Copyright © 2013 Ahmed A. Fadda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Lindsey, “Synthesis of meso-substituted porphyrins,” in The Porphyrin Handbook, K. M. Kanish, K. M. Smith, and R. Guilard, Eds., vol. 1, pp. 45–118, Academic Press, San Diego, Calif, USA, 2000. View at Google Scholar
  2. D. Holten, D. F. Bocian, and J. S. Lindsey, “Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices,” Accounts of Chemical Research, vol. 35, pp. 57–69, 2002. View at Google Scholar
  3. A. Nakano, A. Osuka, I. Yamazaki, T. Yamazaki, and Y. Nishimura, “Synthesis of windmill-type porphyrin arrays as a potent photosynthetic antenna,” Angewandte Chemie, vol. 37, pp. 3023–3027, 1998. View at Google Scholar
  4. O. Mongin, A. Schuwey, M. A. Vallot, and A. Gossauer, “Synthesis of a macrocyclic porphyrin hexamer with a nanometer-sized cavity as a model for the light-harvesting arrays of purple bacteria,” Tetrahedron Letters, vol. 40, no. 48, pp. 8347–8350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Yao, J. Bhaumik, S. Dhanalekshmi, M. Ptaszek, P. A. Rodriguez, and J. S. Lindsey, “Synthesis of porphyrins bearing 1-4 hydroxymethyl groups and other one-carbon oxygenic substituents in distinct patterns,” Tetrahedron, vol. 63, no. 43, pp. 10657–10670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Bhaumik, Z. Yao, K. E. Borbas, M. Taniguchi, and J. S. Lindsey, “Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins,” Journal of Organic Chemistry, vol. 71, no. 23, pp. 8807–8817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Padmaja, W. J. Youngblood, L. Wei, D. F. Bocian, and J. S. Lindsey, “Triple-decker sandwich compounds bearing compact triallyl tripods for molecular information storage applications,” Inorganic Chemistry, vol. 45, no. 14, pp. 5479–5492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Muthukumaran, R. S. Loewe, A. Ambroise et al., “Porphyrins bearing arylphosphonic acid tethers for attachment to oxide surfaces,” Journal of Organic Chemistry, vol. 69, no. 5, pp. 1444–1452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Balakumar, A. B. Lysenko, C. Carcel et al., “Diverse redox-active molecules bearing O-, S-, or Se-terminated tethers for attachment to silicon in studies of molecular information storage,” Journal of Organic Chemistry, vol. 69, no. 5, pp. 1435–1443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Wei, K. Padmaja, W. J. Youngblood, A. B. Lysenko, J. S. Lindsey, and D. F. Bocian, “Diverse redox-active molecules bearing identical thiol-terminated tripodal tethers for studies of molecular information storage,” Journal of Organic Chemistry, vol. 69, no. 5, pp. 1461–1469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. M. Pardridge, “Blood-brain barrier methodology and biology,” in Introduction to the Blood-Brain Barrier, W. M. Pardridge, Ed., pp. 1–8, Cambridge University Press, Cambridge, UK, 1998. View at Google Scholar
  12. J. S. Lindsey, K. A. MacCrum, J. S. Tyhonas, and Y. Y. Chuang, “Investigation of a synthesis of meso-porphyrins employing high concentration conditions and an electron transport chain for aerobic oxidation,” Journal of Organic Chemistry, vol. 59, no. 3, pp. 579–587, 1994. View at Google Scholar · View at Scopus
  13. P. Rothemund and A. R. Menotti, “Porphyrin studies. IV. 1. The synthesis of α,β,γ,δ-tetraphenylporphine,” Journal of American Chemical Society, vol. 63, pp. 267–270, 1941. View at Google Scholar
  14. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, “A simplified synthesis for meso-tetraphenylporphin,” Journal of Organic Chemistry, vol. 32, no. 2, p. 476, 1967. View at Google Scholar · View at Scopus
  15. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205–214, 2004. View at Google Scholar · View at Scopus
  16. M. S. Cooke, M. D. Evans, M. Dizdaroglu, and J. Lunec, “Oxidative DNA damage: mechanisms, mutation, and disease,” FASEB Journal, vol. 17, no. 10, pp. 1195–1214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Hussain, L. J. Hofseth, and C. C. Harris, “Radical causes of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 276–285, 2003. View at Google Scholar · View at Scopus
  19. Y.-J. Cai, L. P. Ma, L. F. Hou, B. Zhou, L. Yang, and Z. L. Liu, “Antioxidant effects of green tea polyphenols on free radical initiated peroxidation of rat liver microsomes,” Chemistry and Physics of Lipids, vol. 120, no. 1-2, pp. 109–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. H. Chen, B. Zhou, L. Yang, L. M. Wu, and Z. L. Liu, “Antioxidant activity of green tea polyphenols against lipid peroxidation initiated by lipid-soluble radicals in micelles,” Journal of the Chemical Society, Perkin Transactions 2, no. 9, pp. 1835–1839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Zhou, Q. Miao, L. Yang, and Z. L. Liu, “Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles,” Chemistry, vol. 11, no. 2, pp. 680–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Zhou, L.-M. Wu, L. Yang, and Z.-L. Liu, “Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles,” Free Radical Biology and Medicine, vol. 38, no. 1, pp. 78–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. J. Cai, J. G. Fang, L. P. Ma, L. Yang, and Z.-L. Liu, “Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues,” Biochimica et Biophysica Acta, vol. 1637, no. 1, pp. 31–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y.-J. Cai, Q. Y. Wei, J. G. Fang et al., “The 3,4-dihydroxyl groups are important for trans-resveratrol analogs to exhibit enhanced antioxidant and apoptotic activities,” Anticancer Research, vol. 24, no. 2, pp. 999–1002, 2004. View at Google Scholar · View at Scopus
  25. L. Hou, B. Zhou, L. Yang, and Z.-L. Liu, “Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides,” Chemistry and Physics of Lipids, vol. 129, no. 2, pp. 209–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Hou, B. Zhou, L. Yang, and Z.-L. Liu, “Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides,” Organic and Biomolecular Chemistry, vol. 2, no. 9, pp. 1419–1423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Morimoto, K. Tanaka, Y. Iwakiri, S. Tokuhiro, S. Fukushima, and Y. Takeuchi, “Protective effects of some neutral amino acids against hypotonic hemolysis,” Biological and Pharmaceutical Bulletin, vol. 18, no. 10, pp. 1417–1422, 1995. View at Google Scholar · View at Scopus
  28. A. B. A. El-Gazzar, M. M. Youssef, A. M. S. Youssef, A. A. Abu-Hashem, and F. A. Badria, “Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities,” European Journal of Medicinal Chemistry, vol. 44, no. 2, pp. 609–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. C. Gutteridge, D. A. Rowley, and B. Halliwell, “Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts,” Biochemical Journal, vol. 199, no. 1, pp. 263–265, 1981. View at Google Scholar · View at Scopus
  30. B. F. Abdel-Wahab, A. A. S. El-Ahl, and F. A. Badria, “Synthesis of new 2-naphthyl ethers and their protective activities against DNA damage induced by bleomycin-iron,” Chemical and Pharmaceutical Bulletin, vol. 57, no. 12, pp. 1348–1351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Tang, Z. Dong, Z. Merican et al., “Hinged bis-porphyrin scaffolds I. The synthesis of a new porphyrin diene and its role in constructing hinged porphyrin dyads and cavity systems,” Tetrahedron Letters, vol. 50, no. 6, pp. 667–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Rai and M. Ravikanth, “Synthesis of covalently linked unsymmetrical porphyrin pentads containing three different porphyrin subunits,” Journal of Organic Chemistry, vol. 73, no. 21, pp. 8364–8375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C.-S. Chan, A. K. S. Tse, and K. S. Chan, “Highly versatile methods for the synthesis of quinonylporphyrins via benzannulation of Fischer carbene complexes and palladium-catalyzed cross-coupling reactions,” Journal of Organic Chemistry, vol. 59, no. 20, pp. 6084–6089, 1994. View at Google Scholar · View at Scopus
  34. M. Gouterman, “Optical spectra and electronic structure of porphyrins and related rings,” in The Porphyrins, D. Dolghin, Ed., vol. 3, pp. 1–165, Academic press, New York, NY, USA, 1978. View at Google Scholar