Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 407862, 13 pages
http://dx.doi.org/10.1155/2013/407862
Research Article

Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

1Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
2Laboratory of General Education for Science and Technology, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

Received 9 November 2012; Revised 5 January 2013; Accepted 9 January 2013

Academic Editor: Yifat Miller

Copyright © 2013 Kenichi Dedachi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, “Comparison of multiple amber force fields and development of improved protein backbone parameters,” Proteins: Structure, Function and Genetics, vol. 65, no. 3, pp. 712–725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Ponder and D. A. Case, “Force fields for protein simulations,” Advances in Protein Chemistry, vol. 66, pp. 27–85, 2003. View at Publisher · View at Google Scholar
  3. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, “Energy parameters in polypepltides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids,” Journal of Physical Chemistry, vol. 79, no. 22, pp. 2361–2381, 1975. View at Google Scholar · View at Scopus
  4. G. Némethy, K. D. Gibson, K. A. Palmer et al., “Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides,” Journal of Physical Chemistry, vol. 96, no. 15, pp. 6472–6484, 1992. View at Google Scholar · View at Scopus
  5. S. J. Weiner, P. A. Kollman, D. A. Case et al., “A new force field for molecular mechanical simulation of nucleic acids and proteins,” Journal of the American Chemical Society, vol. 106, no. 3, pp. 765–784, 1984. View at Google Scholar · View at Scopus
  6. S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, “An all atom force field for simulations of proteins and nucleic acids,” Journal of Computational Chemistry, vol. 7, no. 2, pp. 230–252, 1986. View at Publisher · View at Google Scholar
  7. D. A. Pearlman, D. A. Case, J. W. Caldwell et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules,” Computer Physics Communications, vol. 91, no. 1–3, pp. 1–41, 1995. View at Google Scholar · View at Scopus
  8. D. A. Case, T. E. Cheatham III, T. Darden et al., “The Amber biomolecular simulation programs,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1668–1688, 2005. View at Publisher · View at Google Scholar
  9. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983. View at Publisher · View at Google Scholar
  10. W. L. Jorgensen and J. Tirado-Rives, “The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin,” Journal of the American Chemical Society, vol. 110, no. 6, pp. 1657–1666, 1988. View at Google Scholar · View at Scopus
  11. W. L. Jorgensen and J. Tirado-Rives, “Potential energy functions for atomic-level simulations of water and organic and biomolecular systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6665–6670, 2005. View at Publisher · View at Google Scholar
  12. W. R. P. Scott, P. H. Hünenberger, I. G. Tironi et al., “The GROMOS biomolecular simulation program package,” Journal of Physical Chemistry A, vol. 103, no. 19, pp. 3596–3607, 1999. View at Google Scholar · View at Scopus
  13. U. H. E. Hansmann, Y. Okamoto, and F. Eisenmenger, “Molecular dynamics, langevin and hybrid Monte Carlo simulations in a multicanonical ensemble,” Chemical Physics Letters, vol. 259, no. 3-4, pp. 321–330, 1996. View at Google Scholar · View at Scopus
  14. N. Nakajima, H. Nakamura, and A. Kidera, “Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides,” Journal of Physical Chemistry B, vol. 101, no. 5, pp. 817–824, 1997. View at Google Scholar · View at Scopus
  15. K. Hukushima and K. Nemoto, “Exchange monte carlo method and application to spin glass simulations,” Journal of the Physical Society of Japan, vol. 65, no. 6, pp. 1604–1608, 1996. View at Google Scholar · View at Scopus
  16. Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein folding,” Chemical Physics Letters, vol. 314, no. 1-2, pp. 141–151, 1999. View at Publisher · View at Google Scholar
  17. Y. Okamoto, “Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations,” Journal of Molecular Graphics and Modelling, vol. 22, no. 5, pp. 425–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Yang, C. Tan, M.-J. Hsieh et al., “New-generation amber united-atom force field,” The Journal of Physical Chemistry B, vol. 110, no. 26, pp. 13166–13176, 2006. View at Publisher · View at Google Scholar
  19. A. Liwo, S. Ołdziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, “A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data,” Journal of Computational Chemistry, vol. 18, no. 7, pp. 849–873, 1997. View at Google Scholar · View at Scopus
  20. A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Ołdziej, and H. A. Scheraga, “A united-residue force field for off-lattice protein-structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by Z-score optimization,” Journal of Computational Chemistry, vol. 18, no. 7, pp. 874–887, 1997. View at Google Scholar · View at Scopus
  21. A. Liwo, R. Kaźmierkiewicz, C. Czaplewski et al., “United-residue force field for off-lattice protein-structure simulations: III. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials,” Journal of Computational Chemistry, vol. 19, no. 3, pp. 259–276, 1998. View at Google Scholar · View at Scopus
  22. A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, “Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field,” Journal of Chemical Physics, vol. 115, no. 5, pp. 2323–2347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. V. Rojas, A. Liwo, and H. A. Scheraga, “Molecular dynamics with the united-residue force field: Ab initio folding simulations of multichain proteins,” Journal of Physical Chemistry B, vol. 111, no. 1, pp. 293–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The MARTINI force field: coarse grained model for biomolecular simulations,” Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7812–7824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S. Marrink, “The MARTINI coarse-grained force field: extension to proteins,” Journal of Chemical Theory and Computation, vol. 4, no. 5, pp. 819–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Rojas, A. Liwo, D. Browne, and H. A. Scheraga, “Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field,” Journal of Molecular Biology, vol. 404, no. 3, pp. 537–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Iwaoka, D. Yosida, and N. Kimura, “Importance of the single amino acid potential in water for secondary and tertiary structures of proteins,” Journal of Physical Chemistry B, vol. 110, no. 29, pp. 14475–14482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Iwaoka, M. Okada, and S. Tomoda, “Solvent effects on the φ-ψ potential surfaces of glycine and alanine dipeptides studied by PCM and I-PCM methods,” Journal of Molecular Structure: THEOCHEM, vol. 586, pp. 111–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Smith, K. M. Fiebig, H. Schwalbe, and C. M. Dobson, “The concept of a random coil : residual structure in peptides and denatured proteins,” Folding and Design, vol. 1, no. 5, pp. R95–R106, 1996. View at Google Scholar · View at Scopus
  30. K. M. Fiebig, H. Schwalbe, M. Buck, L. J. Smith, and C. M. Dobson, “Toward a description of the conformations of denatured states of proteins. Comparison of a random coil model with NMR measurements,” Journal of Physical Chemistry, vol. 100, no. 7, pp. 2661–2666, 1996. View at Google Scholar · View at Scopus
  31. Y. Sakae and Y. Okamoto, “Optimization of protein force-field parameters with the Protein Data Bank,” Chemical Physics Letters, vol. 382, no. 5-6, pp. 626–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Kamiya, Y. S. Watanabe, S. Ono, and J. Higo, “AMBER-based hybrid force field for conformational sampling of polypeptides,” Chemical Physics Letters, vol. 401, no. 1–3, pp. 312–317, 2005. View at Publisher · View at Google Scholar
  33. M. Iwaoka and S. Tomoda, “The SAAP force field. A simple approach to a new all-atom protein force field by using Single Amino Acid Potential (SAAP) functions in various solvents,” Journal of Computational Chemistry, vol. 24, no. 10, pp. 1192–1200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Iwaoka, N. Kimura, D. Yosida, and T. Minezaki, “The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and monte carlo molecular simulation for short peptides,” Journal of Computational Chemistry, vol. 30, no. 13, pp. 2039–2055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, “Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium,” Journal of Physical Chemistry, vol. 100, no. 51, pp. 19824–19839, 1996. View at Google Scholar · View at Scopus
  36. G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, “Pairwise solute descreening of solute charges from a dielectric medium,” Chemical Physics Letters, vol. 246, no. 1-2, pp. 122–129, 1995. View at Google Scholar · View at Scopus
  37. V. Tsui and D. A. Case, “Theory and applications of the generalized Born solvation model in macromolecular simulations,” Biopolymers, vol. 56, no. 4, pp. 275–291, 2001. View at Google Scholar
  38. W. H. Graham, E. S. Carter II., and R. P. Hicks, “Conformational analysis of Met-enkephalin in both aqueous solution and in the presence of sodium dodecyl sulfate micelles using multidimensional NMR and molecular modeling,” Biopolymers, vol. 32, no. 12, pp. 1755–1764, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Mitsutake, M. Kinoshita, Y. Okamoto, and F. Hirata, “Combination of the replica-exchange Monte Carlo method and the reference interaction site model theory for simulating a peptide molecule in aqueous solution,” Journal of Physical Chemistry B, vol. 108, no. 49, pp. 19002–19012, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Mitsutake, M. Kinoshita, Y. Okamoto, and F. Hirata, “Multicanonical algorithm combined with the RISM theory for simulating peptides in aqueous solution,” Chemical Physics Letters, vol. 329, no. 3-4, pp. 295–303, 2000. View at Publisher · View at Google Scholar
  41. M. Kinoshita, Y. Okamoto, and F. Hirata, “First-principle determination of peptide conformations in solvents: combination of Monte Carlo simulated annealing and RISM theory,” Journal of the American Chemical Society, vol. 120, no. 8, pp. 1855–1863, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Kinoshita, Y. Okamoto, and F. Hirata, “Solvation structure and stability of peptides in aqueous solutions analyzed by the reference interaction site model theory,” Journal of Chemical Physics, vol. 107, no. 5, pp. 1586–1599, 1997. View at Google Scholar · View at Scopus
  43. L. Ramya and N. Gautham, “Effects of hydration on the conformational energy landscape of the pentapeptide Met-enkephalin,” Journal of Chemical Theory and Computation, vol. 5, no. 8, pp. 2180–2190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Y. Sanbonmatsu and A. E. García, “Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics,” Proteins: Structure, Function and Genetics, vol. 46, no. 2, pp. 225–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Van Der Spoel and H. J. C. Berendsen, “Molecular dynamics simulations of leu-enkephalin in water and DMSO,” Biophysical Journal, vol. 72, no. 5, pp. 2032–2041, 1997. View at Google Scholar · View at Scopus
  46. L. Zhan, J. Z. Y. Chen, and W. Liu, “Comparison of predicted native structures of met-enkephalin based on various accessible-surface-area solvent models,” Journal of Computational Chemistry, vol. 30, no. 7, pp. 1051–1058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Su and R. I. Cukier, “Hamiltonian and distance replica exchange method studies of met-enkephalin,” Journal of Physical Chemistry B, vol. 111, no. 42, pp. 12310–12321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. A. Evans and D. J. Wales, “The free energy landscape and dynamics of met-enkephalin,” Journal of Chemical Physics, vol. 119, no. 18, pp. 9947–9955, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. M. Palian, Boguslavsky, D. F. O'Brien, and R. Polt, “Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5823–5831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. B. A. Berg and H. Hsu, “Metropolis simulations of Met-Enkephalin with solvent-accessible area parametrizations,” Physical Review E, vol. 69, no. 2, Article ID 026703, 9 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Vengadesan and N. Gautham, “Energy landscape of Met-enkephalin and Leu-enkephalin drawn using mutually orthogonal Latin squares sampling,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 11196–11205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. G. Itoh and Y. Okamoto, “Effective sampling in the configurational space of a small peptide by the multicanonical-multioverlap algorithm,” Physical Review E, vol. 76, no. 2, Article ID 026705, 2007. View at Publisher · View at Google Scholar
  53. A. Mitsutake, U. H. E. Hansmann, and Y. Okamoto, “Temperature dependence of distributions of conformations of a small peptide,” Journal of Molecular Graphics and Modelling, vol. 16, no. 4–6, pp. 226–238, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Honda, K. Yamasaki, Y. Sawada, and H. Morii, “10 Residue folded peptide designed by segment statistics,” Structure, vol. 12, no. 8, pp. 1507–1518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Satoh, K. Shimizu, S. Nakamura, and T. Terada, “Folding free-energy landscape of a 10-residue mini-protein, chignolin,” FEBS Letters, vol. 580, no. 14, pp. 3422–3426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Terada, D. Satoh, T. Mikawa, Y. Ito, and K. Shimizu, “Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation,” Proteins: Structure, Function and Genetics, vol. 73, no. 3, pp. 621–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Van Der Spoel and M. M. Seibert, “Protein folding kinetics and thermodynamics from atomistic simulations,” Physical Review Letters, vol. 96, no. 23, Article ID 238102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. M. Seibert, A. Patriksson, B. Hess, and D. Van Der Spoel, “Reproducible polypeptide folding and structure prediction using molecular dynamics simulations,” Journal of Molecular Biology, vol. 354, no. 1, pp. 173–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Xu, T. Lai, Y. Yang, and Y. Mu, “Reversible folding simulation by hybrid Hamiltonian replica exchange,” Journal of Chemical Physics, vol. 128, no. 17, Article ID 175105, 2008. View at Publisher · View at Google Scholar
  60. S. Kannan and M. Zacharias, “Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential,” Proteins: Structure, Function and Genetics, vol. 66, no. 3, pp. 697–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. X. Dou and J. Wang, “Folding free energy landscape of the decapeptide chignolin,” Modern Physics Letters B, vol. 22, no. 31, pp. 3087–3098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Suenaga, T. Narumi, N. Futatsugi et al., “Folding dynamics of 10-residue beta-hairpin peptide chignolin,” Chemistry, vol. 2, no. 5, pp. 591–598, 2007. View at Publisher · View at Google Scholar
  63. S. Roy, S. Goedecker, M. J. Field, and E. Penev, “A minima hopping study of all-atom protein folding and structure prediction,” Journal of Physical Chemistry B, vol. 113, no. 20, pp. 7315–7321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Moritsugu, T. Terada, and A. Kidera, “Scalable free energy calculation of proteins via multiscale essential sampling,” Journal of Chemical Physics, vol. 133, no. 22, Article ID 224105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Mennucci, E. Cancès, and J. Tomasi, “Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications,” Journal of Physical Chemistry B, vol. 101, no. 49, pp. 10506–10517, 1997. View at Google Scholar · View at Scopus
  66. E. Cancès, B. Mennucci, and J. Tomasi, “A new integral equation formalism for the polarizable continuum model: theoretical background and applications to Isotropic and anisotropic dielectrics,” Journal of Chemical Physics, vol. 107, no. 8, pp. 3032–3041, 1997. View at Google Scholar · View at Scopus
  67. G. Scalmani and M. J. Frisch, “Continuous surface charge polarizable continuum models of solvation. I. General formalism,” Journal of Chemical Physics, vol. 132, no. 11, Article ID 114110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision C.02, Gaussian, Wallingford, UK, 2004.
  69. Y. K. Kang, “Ab initio and DFT conformational study of proline dipeptide,” Journal of Molecular Structure: THEOCHEM, vol. 675, no. 1–3, pp. 37–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Makowski, J. Makowska, and L. Chmurzyński, “Ab initio study of the energetics of protonation, deprotonation and homocomplexed cations and anions formation in systems modeling side chains of biomolecules,” Journal of Molecular Structure: THEOCHEM, vol. 674, no. 1–3, pp. 61–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. B. H. Besler, K. M. Merz Jr., and P. A. Kollman, “Atomic charges derived from semiempirical methods,” Journal of Computational Chemistry, vol. 11, no. 4, pp. 431–439, 1990. View at Publisher · View at Google Scholar
  72. V. V. Kostjukov, N. M. Khomytova, A. A. H. Santiago, R. L. Ibarra, D. B. Davies, and M. P. Evstigneev, “Calculation of the electrostatic charges and energies for intercalation of aromatic drug molecules with DNA,” International Journal of Quantum Chemistry, vol. 111, no. 3, pp. 711–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. D. A. Case, T. A. Darden, T. E. Cheatham III et al., AMBER 10, University of California, San Francisco, Calif, USA, 2008.
  74. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. View at Google Scholar · View at Scopus
  75. K. Binder, “Applications of Monte Carlo methods to statistical physics,” Reports on Progress in Physics, vol. 60, no. 5, pp. 487–559, 1997. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30, 1998. View at Google Scholar · View at Scopus
  77. I. Marcotte, F. Separovic, M. Auger, and S. M. Gagné, “A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles,” Biophysical Journal, vol. 86, no. 3, pp. 1587–1600, 2004. View at Google Scholar · View at Scopus
  78. A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. La Grand, and R. C. Walker, “Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born,” Journal of Chemical Theory and Computation, vol. 8, no. 5, pp. 1542–1555, 2012. View at Publisher · View at Google Scholar
  79. J. Shao, S. W. Tanner, N. Thompson, and T. E. Cheatham III., “Clustering molecular dynamics trajectories: I. Characterizing the performance of different clustering algorithms,” Journal of Chemical Theory and Computation, vol. 3, no. 6, pp. 2312–2334, 2007. View at Publisher · View at Google Scholar
  80. H. A. Scheraga, M. Khalili, and A. Liwo, “Protein-folding dynamics: overview of molecular simulation techniques,” Annual Review of Physical Chemistry, vol. 58, pp. 57–83, 2007. View at Publisher · View at Google Scholar
  81. Y. Sakae and Y. Okamoto, “Optimisation of OPLS-UA force-field parameters for protein systems using protein data bank,” Molecular Simulation, vol. 36, no. 14, pp. 1148–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus