Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 412079, 6 pages
http://dx.doi.org/10.1155/2013/412079
Research Article

Synthesis and Antibacterial and Antibiofilm Activity of Iron Oxide Glycerol Nanoparticles Obtained by Coprecipitation Method

1National Institute of Materials Physics, 105 bis Atomistilor, P.O. Box MG 07, Magurele, 077125 Bucharest, Romania
2Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, Bucharest, Romania
3Floreasca Emergency Hospital, Bucharest 5, Calea Floresca no. 8, Sector 1, Bucarest, Romania
4EA 4592 Géoressources & Environnement, EGID and Université de Bordeaux 1 allée F. Daguin 18, 33607 Pessac Cedex, France

Received 23 June 2012; Accepted 30 July 2012

Academic Editor: Gulaim A. Seisenbaeva

Copyright © 2013 Simona Liliana Iconaru et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel, “SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium,” International Biodeterioration and Biodegradation, vol. 64, no. 3, pp. 238–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Figuerola, R. Di Corato, L. Manna, and T. Pellegrino, “From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications,” Pharmacological Research, vol. 62, no. 2, pp. 126–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Nicoara, D. Fratiloiu, M. Nogues, J. L. Dormann, and F. Vasiliu, “Ni-Zn ferrite nanoparticles prepared by ball milling,” Materials Science Forum, vol. 235–238, no. 1, pp. 145–150, 1997. View at Google Scholar · View at Scopus
  4. D. Prodan, C. Chanéac, E. Tronc et al., “Adsorption phenomena and magnetic properties of γ-Fe2O3 nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 203, no. 1–3, pp. 63–65, 1999. View at Google Scholar · View at Scopus
  5. D. Prodan, V. V. Grecu, M. N. Grecu, E. Tronc, and J. P. Jolivet, “Electron spin resonance in γ-Fe2O3 nanoparticles dispersed in a polymer matrix,” Measurement Science and Technology, vol. 10, no. 9, pp. L41–L43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Predoi, V. Kuncser, and G. Filoti, “Magnetic behaviour of maghemite nanoparticles studied by Mössbauer spectroscopy,” Romanian Reports in Physics, vol. 56, no. 3, pp. 373–378, 2004. View at Google Scholar
  7. R. Qiao, C. Yang, and M. Gao, “Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6274–6293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Park, K. An, Y. Hwang et al., “Ultra-large-scale syntheses of monodisperse nanocrystals,” Nature Materials, vol. 3, no. 12, pp. 891–895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Xu, Z. Yuan, N. Kohler, J. Kim, M. A. Chung, and S. Sun, “FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition,” Journal of the American Chemical Society, vol. 131, pp. 15346–15351, 2009. View at Publisher · View at Google Scholar
  10. C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh et al., “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angewandte Chemie International Edition, vol. 47, pp. 173–176, 2008. View at Publisher · View at Google Scholar
  11. M. Oka, T. Tomioka, K. Tomita, A. Nishino, and S. Ueda, “Inactivation of enveloped viruses by a silver-thiosulfate complex,” Metal-Based Drugs, vol. 1, p. 511, 1994. View at Publisher · View at Google Scholar
  12. A. Oloffs, C. Grosse-Siestrup, S. Bisson, M. Rinck, R. Rudolph, and U. Gross, “Biocompatibility of silver-coated polyurethane catheters and silvercoated Dacron material,” Biomaterials, vol. 15, no. 10, pp. 753–758, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Flores, N. Colón, O. Rivera et al., “A study of the growth curves of C. xerosis and E. coli Bacteria in Mediums Containing Cobalt Ferrite Nanoparticles,” Materials Research Society, p. 820, 2004. View at Google Scholar
  14. D. N. Williams, S. H. Ehrman, and T. R. P. Holoman, “Evaluation of the microbial growth response to inorganic nanoparticles,” Journal of Nanobiotechnology, vol. 4, article 3, 2006. View at Publisher · View at Google Scholar
  15. W. Jiang, H. Mashayekhi, and B. Xing, “Bacterial toxicity comparison between nano- and micro-scaled oxide particles,” Environmental Pollution, vol. 157, no. 5, pp. 1619–1625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Massart, “Magnetic fluids and process for obtaining them,” US Patent 4329241, 1982. View at Google Scholar
  17. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Transactions on Magnetics, vol. 17, pp. 1247–1248, 1981. View at Publisher · View at Google Scholar
  18. R. Massart, J. Roger, and V. Cabuil, “New Trends in Chemistry of Magnetic Colloids: Polar and Non Polar Magnetic Fluids, Emulsions,Capsules and Vesicles,” Brazilian Journal of Physics, vol. 25, no. 2, pp. 135–141, 1995. View at Google Scholar
  19. D. Predoi and C. M. Valsangiacom, “Thermal studies of magnetic spinel iron oxide in solution,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 6, pp. 1797–1799, 2007. View at Google Scholar · View at Scopus
  20. D. Zins, V. Cabuil, and R. Massart, “New aqueous magnetic fluids,” Journal of Molecular Liquids, vol. 83, no. 1–3, pp. 217–232, 1999. View at Google Scholar · View at Scopus
  21. C. Limban and M. C. Chifiriuc, “Antibacterial activity of new dibenzoxepinone oximes with fluorine and trifluoromethyl group substituents,” International Journal of Molecular Sciences, vol. 12, no. 10, pp. 6432–6444, 2011. View at Publisher · View at Google Scholar
  22. M. C. Chifiriuc, C. Stecoza, L. Veronica, O. Dracea, C. Larion, and A. M. Israil, “Antimicrobial activity of some new O-acyloximino-dibenzo[b,e]thiepins and O-acyloximino-dibenzo[b,e]thiepin-5,5-dioxides against planktonic cells,” Romanian Biotechnological Letters, vol. 15, no. 2, pp. 5134–5139, 2010. View at Google Scholar · View at Scopus
  23. L. Marutescu, C. Limban, M. C. Chifiriuc, A. V. Missir, I. C. Chirita, and M. T. Caproiu, “Studies on the antimicrobial activity of new compounds containing thiourea function,” Biointerface Research in Applied Chemistry, vol. 1, no. 6, pp. 236–241, 2011. View at Google Scholar
  24. C. Limban, L. Marutescu, and M. C. Chifiriuc, “Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives,” Molecules, vol. 16, no. 9, pp. 7593–7607, 2011. View at Publisher · View at Google Scholar
  25. M. C. Chifiriuc, M. M. Mitache, Badea et al., “Microlevel study for the assessment of the economic impact of resistance to disinfectants used in the hospital environment and evaluation of new alternatives,” Ege Academic Review, vol. 9, no. 3, pp. 955–959, 2009. View at Google Scholar
  26. R. M. Cornell and U. Schertmann, Preparation and Characterisation, VCH, Weinheim, Germany, 1991.
  27. E. Nor Hidawati and A. M. M. Sakinah, “Treatment of glycerin pitch from biodiesel production,” International Journal of Chemical and Environmental Engineering, vol. 2, no. 5, pp. 309–313, 2011. View at Google Scholar
  28. J. Hradil, A. Pisarev, M. Babič, and D. Horák, “Dextran-modified iron oxide nanoparticles,” China Particuology, vol. 5, no. 1-2, pp. 162–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. Hair, “Hydroxyl groups on silica surface,” Journal of Non-Crystalline Solids, vol. 19, pp. 299–309, 1975. View at Google Scholar · View at Scopus
  30. E. Barrado, F. Prieto, J. Medina, and F. A. Lopez, “Characterisation of solid residues obtained on removal of Cr from waste water,” Journal of Alloys and Compounds, vol. 335, pp. 203–209, 2002. View at Publisher · View at Google Scholar
  31. J. L. Martin de Vidales, A. Lopez-Delgado, E. Vila, and F. A. Lopez, “The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature,” Journal of Alloys and Compounds, vol. 287, pp. 276–283, 1999. View at Publisher · View at Google Scholar
  32. D. Predoi, “A Study On Iron Oxide Nanoparticles Coated With Dextrin Obtained By Coprecipitation,” Digest Journal of Nanomaterials and Biostructures, vol. 2, no. 1, p. 169, 2007. View at Google Scholar
  33. T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, and S. Margel, “Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties,” Colloids and Surfaces A, vol. 374, no. 1–3, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. M. Donlan and J. W. Costerton, “Biofilms: survival mechanisms of clinically relevant microorganisms,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 167–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Lazăr and M. C. Chifiriuc, “Medical significance and new therapeutical strategies for biofilm associated infections,” Roumanian Archives of Microbiology and Immunology, vol. 69, no. 3, pp. 125–138, 2010. View at Google Scholar · View at Scopus
  36. M. Singh, S. Singh, S. Prasad, and I. S. Gambhir, “Nanotechnology in medicine and antibacterial effect of silver nanoparticles,” Digest Journal of Nanomaterials and Biostructures, 3, pp. 115–122, 2008. View at Google Scholar