Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 412308, 10 pages
http://dx.doi.org/10.1155/2013/412308
Research Article

Preparation and Characterization of Promoted Fe-V/SiO2 Nanocatalysts for Oxidation of Alcohols

1Faculty of Chemistry, Razi University, P.O. Box +98-67149, Kermanshah, Iran
2Nanoscience & Nanotechnology Research Center (NNRC), Razi University, P.O. Box +98-67149, Kermanshah, Iran

Received 27 May 2013; Accepted 20 August 2013

Academic Editor: Giuseppe Gattuso

Copyright © 2013 Hamid Reza Rafiee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” Journal of the American Chemical Society, vol. 129, no. 9, pp. 2628–2635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Jing, Y. Wang, and S. Wu, “Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method,” Sensors and Actuators, vol. 113, no. 1, pp. 177–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Bautista, O. Bomati-Miguel, X. Zhao et al., “Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging,” Nanotechnology, vol. 15, no. 4, pp. S154–S159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, and M. Zhang, “Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery,” Small, vol. 2, no. 6, pp. 785–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Huang, C. Li, Z. Cheng et al., “Magnetic Fe3O4 mesoporous silica composites for drug delivery and bioadsorption,” Journal of Colloid and Interface Science, vol. 376, no. 1, pp. 312–321, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. B. V. S. Reddy, A. S. Krishna, A. V. Ganesh, and G. G. K. S. N. Kumar, “Nano Fe3O4 as magnetically recyclable catalyst for the synthesis of α-aminophosphonates in solvent-free conditions,” Tetrahedron Letters, vol. 52, no. 12, pp. 1359–1362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Masteri-Farahani and Z. Kashef, “Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 7, pp. 1431–1434, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Rostamizadeh, M. Azad, N. Shadjou, and M. Hasanzadeh, “(Alpha-Fe2O3)-MCM-41-SO3H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1, 6-naphthyridine derivatives,” Catalysis Communications, vol. 25, pp. 83–91, 2012. View at Google Scholar
  9. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, “Synthesis and magnetic studies of uniform iron nanorods and nanospheres,” Journal of the American Chemical Society, vol. 122, no. 35, pp. 8581–8582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, “Colloidal nanocrystal shape and size control: the case of cobalt,” Science, vol. 291, no. 5511, pp. 2115–2117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Sun, A. Gutierrez, M. J. Yacaman, X. Dong, and S. Jin, “Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni,” Materials Science and Engineering A, vol. 286, no. 1, pp. 157–160, 2000. View at Google Scholar · View at Scopus
  12. M. M. Mojtahedi, M. S. Abaee, A. Rajabi, P. Mahmoodi, and S. Bagherpoor, “Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides,” Journal of Molecular Catalysis A, vol. 361-362, pp. 68–71, 2012. View at Google Scholar
  13. M. S. Islam, J. Kurawaki, Y. Kusumoto, M. Abdulla-Al-Mamun, and M. Z. Bin Mukhlish, “Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, gamma-Fe2O3 and alpha-Fe2O3) nanoparticles,” Journal of Scientific Research, vol. 4, pp. 99–107, 2012. View at Google Scholar
  14. I. Sharifi and H. Shokrollahi, “Nanostructural, magnetic and Mössbauer studies of nanosized Co1-xZnxFe2O4 synthesized by co-precipitation,” Journal of Magnetism and Magnetic Materials, vol. 324, pp. 2397–2403, 2012. View at Google Scholar
  15. X. Zhang, B. Wang, and X. Xu, “Synthesis and magnetic properties of Cu-coated Fe composite nanoparticles,” Applied Surface Science, vol. 256, no. 13, pp. 4109–4113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tadić, V. Kusigerski, D. Marković, M. Panjan, I. Milošević, and V. Spasojević, “Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix,” Journal of Alloys and Compounds, vol. 525, pp. 28–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Tang, L. Wang, Y. Zhang, S. Li, S. Tian, and B. Wang, “Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification,” Fuel Processing Technology, vol. 95, pp. 84–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, and D. Thompsett, “Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals,” Angewandte Chemie, vol. 43, no. 42, pp. 5645–5649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Zhao, B. Zhang, and L. Feng, “Preparation and magnetic properties of magnetite nanoparticles,” Materials Letters, vol. 68, pp. 112–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Gurmen and B. Ebin, “Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. 585–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. de Castro, G. Benito, S. Hurst, C. J. Serna, M. P. Morales, and S. Veintemillas-Verdaguer, “One step production of magnetic nanoparticle films by laser pyrolysis inside a chemical vapour deposition reactor,” Thin Solid Films, vol. 519, no. 22, pp. 7677–7682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Nazrul Islam, L. van Phong, J.-R. Jeong, and C. Kim, “A facile route to sonochemical synthesis of magnetic iron oxide (Fe3O4) nanoparticles,” Thin Solid Films, vol. 519, no. 23, pp. 8277–8279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-Y. Yin, M. Minakshi, D. E. Ralph, Z.-T. Jiang, Z. Xie, and H. Guo, “Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: surface characterization, reaction mechanism and electrochemical activity,” Journal of Alloys and Compounds, vol. 509, no. 41, pp. 9821–9825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Šimkien, M. Treideris, G. Niaura et al., “Multifunctional iron and iron oxide nanoparticles in silica,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 1026–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Tsuzuki, F. Schäffel, M. Muroi, and P. G. McCormick, “Magnetic properties of mechanochemically synthesized γ-Fe2O3 nanoparticles,” Journal of Alloys and Compounds, vol. 509, no. 17, pp. 5420–5425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Orolínová, A. Mockovčiaková, V. Zeleňák, and M. Myndyk, “Influence of heat treatment on phase transformation of clay-iron oxide composite,” Journal of Alloys and Compounds, vol. 511, no. 1, pp. 63–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Ursachi, A. Vasile, A. Ianculescu, E. Vasile, and A. Stancu, “Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 1251–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Gandhi, S. Venkatesh, U. Sharma, N. R. Jagannathan, S. Sethuraman, and U. M. Krishnan, “Superparamagnetic nanosystems based on iron oxide nanoparticles & mesoporous silica: synthesis & evaluation of their magnetic, relaxometric and biocompatability properties,” Journal of Materials Chemistry, vol. 21, no. 39, pp. 15698–15707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Wang, Y. Yang, J. Xu, H. Wang, M. Ding, and Y. Li, “Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts,” Journal of Molecular Catalysis A, vol. 326, no. 1-2, pp. 29–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Jenkins and R. L. Sder, X-Ray Powder Diffractometry, Chemical Analysis, John Wiley and Sons, New York, NY, USA, 1996.
  31. Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, and H. Wan, “Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method,” Materials Letters, vol. 61, no. 14-15, pp. 3174–3178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Xie, H. Peng, and L. Chen, “Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst,” Applied Catalysis A, vol. 300, no. 1, pp. 67–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Sun, Y. Ding, J. Duan et al., “Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst,” Bioresource Technology, vol. 101, no. 3, pp. 953–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Jacobson, R. Gopinath, L. C. Meher, and A. K. Dalai, “Solid acid catalyzed biodiesel production from waste cooking oil,” Applied Catalysis B, vol. 85, no. 1-2, pp. 86–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. C. Alba-Rubio, J. Santamaría-González, J. M. Mérida-Robles et al., “Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts,” Catalysis Today, vol. 149, pp. 281–287, 2010. View at Google Scholar
  36. C. Samart, P. Sreetongkittikul, and C. Sookman, “Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica,” Fuel Processing Technology, vol. 90, no. 7-8, pp. 922–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. C. Juan, J. Zhang, and M. A. Yarmo, “12-Tungstophosphoric acid supported on MCM-41 for esterification of fatty acid under solvent-free condition,” Journal of Molecular Catalysis A, vol. 267, no. 1-2, pp. 265–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Backingham and F. Macdonald, Dictionary of Organic Compounds, Chapman and Hall, London, UK, 1996.
  39. C.-H. Lee and Y.-W. Chen, “Effect of basic additives on Pt/Al2O3 for CO and propylene oxidation under oxygen-deficient conditions,” Industrial and Engineering Chemistry Research, vol. 36, no. 5, pp. 1498–1506, 1997. View at Google Scholar · View at Scopus
  40. S. Therdthianwong, C. Siangchin, and A. Therdthianwong, “Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition,” Fuel Processing Technology, vol. 89, no. 2, pp. 160–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Hayakawa, H. Tanaka, and K. Fujimoto, “Studies on precipitated iron catalysts for Fischer-Tropsch synthesis,” Applied Catalysis A, vol. 310, no. 1-2, pp. 24–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Yu, B. Wu, J. Xu, Z. Tao, H. Xiang, and Y. Li, “Effect of Pt impregnation on a precipitated iron-based fischer-tropsch synthesis catalyst,” Catalysis Letters, vol. 125, no. 1-2, pp. 116–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Predoi, O. Crisan, A. Jitianu et al., “Iron oxide in a silica matrix prepared by the sol-gel method,” Thin Solid Films, vol. 515, no. 16, pp. 6319–6323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Bruni, F. Cariati, M. Casu et al., “IR and NMR study of nanoparticle-support interactions in a Fe2O3-SiO2 nanocomposite prepared by a sol-gel method,” Nanostructured Materials, vol. 11, no. 5, pp. 573–586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Bordiga, R. Buzzoni, F. Geobaldo et al., “Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods,” Journal of Catalysis, vol. 158, no. 2, pp. 486–501, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Fabrizioli, T. Bürgi, M. Burgener, S. Van Doorslaer, and A. Baiker, “Synthesis, structural and chemical properties of iron oxide-silica aerogels,” Journal of Materials Chemistry, vol. 12, no. 3, pp. 619–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Qing, Y. Yang, B. Wu et al., “Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts,” Journal of Catalysis, vol. 279, no. 1, pp. 111–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Velusamy and T. Punniyamurthy, “Novel vanadium-catalyzed oxidation of alcohols to aldehydes and ketones under atmospheric oxygen,” Organic Letters, vol. 6, no. 2, pp. 217–219, 2004. View at Publisher · View at Google Scholar · View at Scopus