Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 479343, 5 pages
http://dx.doi.org/10.1155/2013/479343
Research Article

Synthesis, Characterization, and Antimicrobial Studies of N, O Donor Schiff Base Polymeric Complexes

1Government Polytechnic, Gondia, Maharashtra 441601, India
2Department of Chemistry, RTMNU, Nagpur, Maharashtra 440033, India

Received 9 May 2013; Revised 1 August 2013; Accepted 1 August 2013

Academic Editor: Antonio Manuel Romerosa-Nievas

Copyright © 2013 Shubhangi N. Kotkar and Harjeet D. Juneja. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Shakeel, N. V. Kalyane, S. R. Karjgi, and M. L. Ahmed, “Synthesis and antibacterial activity of new Schiff's bases,” International Journal of Pharmacy and Life Sciences, no. 5, pp. 246–249, 2010. View at Google Scholar
  2. R. Johari, G. Kumar, and S. Singh, “Synthesis and antibacterial activity of M (II) Schiff base complex,” Journal of the Indian Council of Chemists, vol. 26, pp. 23–27, 2009. View at Google Scholar
  3. J. H. Pandya and M. K. Shah, “Synthesis and antimicrobial properties of transition metal complexes of novel Schiff base ligand derived from 5-bromosalicyldehyde,” Journal of the Indian Council of Chemists, vol. 26, no. 2, pp. 109–112, 2009. View at Google Scholar
  4. S. Varghese and M. K. Muraleedharan Nair, “Spectroscopic and antimicrobial studies of some 2-hydroxybenzilidene-3-aminophenol complexes,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 2, pp. 347–353, 2010. View at Google Scholar · View at Scopus
  5. S. Kumar, D. N. Dhar, and P. N. Saxena, “Applications of metal complexes of Schiff bases-a review,” Journal of Scientific and Industrial Research, vol. 68, no. 3, pp. 181–187, 2009. View at Google Scholar · View at Scopus
  6. F. M. Morad, M. M. E. L. Ajaily, and S. Ben-Gweirif, “Preparation, physical characterization and antibacterial activity of Ni (II) Schiff base complex,” Journal of Science and Its Applications, vol. 1, pp. 72–78, 2007. View at Google Scholar
  7. P. Singh and R. K. S. Dhakarey, “Synthesis, characterization and antimicrobial studies of metal complexes with Schiff bases derived from 2-thienyl glyoxal,” Rasayan Journal of Chemistry, vol. 2, no. 4, pp. 869–874, 2009. View at Google Scholar · View at Scopus
  8. J. Salimon, N. Salih, E. Yousif, A. Hameed, and H. Ibraheem, “Synthesis, characterization and biological activity of Schiff bases of 2, 5-dimercapto-1,3,4-thiadiazole,” Australian Journal of Basic and Applied Sciences, vol. 4, no. 7, pp. 2016–2021, 2010. View at Google Scholar · View at Scopus
  9. K. S. S. Lamani, O. Kotresh, M. A. Phaniband, and J. C. Kadakol, “Synthesis, characterization and antimicrobial properties of Schiff bases derived from condensation of 8-formyl-7-hydroxy-4-methylcoumarin and substituted triazole derivatives,” E-Journal of Chemistry, vol. 6, supplement 1, pp. S239–S246, 2009. View at Google Scholar · View at Scopus
  10. A. M. Hamil, K. M. Khalifa, A. Al-Houni, and M. M. El-Ajaily, “Synthesis, spectroscopic investigation and antiactivity activity of Schiff base complexes of cobalt (II) and copper (II) ions,” Rasayan Journal of Chemistry, vol. 2, no. 2, pp. 261–266, 2009. View at Google Scholar · View at Scopus
  11. A. P. Mishra and N. Sharma, “Synthesis, characterization, X-ray and thermal studies of some Schiff base metal complexes,” Journal of the Indian Council of Chemists, vol. 26, pp. 125–129, 2009. View at Google Scholar
  12. T. Rosu, S. Pasculescu, V. Lazar, C. Chifiriuc, and R. Cernat, “Copper(II) complexes with ligands derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: synthesis and biological activity,” Molecules, vol. 11, no. 11, pp. 904–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. S. Gwaram, H. M. Ali, M. A. Abdulla et al., “Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes,” Molecules, vol. 17, no. 5, pp. 5952–5971, 2012. View at Google Scholar
  14. K. T. Joshi, A. M. Pancholi, K. S. Pandya, and A. S. Thakar, “Synthesis, characterization and antibacterial activity of novel Schiff base derived from 4-acetyl-3-methyl-1-(4’-Methyl-Phenyl)-2-Pyrazolin-5-one and its transition metal complexes,” International Journal of Research in Chemistry and Environment, vol. 1, no. 2, pp. 263–269, 2011. View at Google Scholar
  15. A. P. Mishra, R. Mishra, R. Jain, and S. Gupta, “Synthesis of new VO(II), Co(II), Ni(II) and Cu(II) complexes with isatin-3- chloro-4-floroaniline and 2-pyridinecarboxylidene-4 aminoantipyrine and their antimicrobial studies,” The Korean Society of Mycology, vol. 40, no. 1, pp. 20–26, 2012. View at Google Scholar
  16. A. Prakash, M. P. Gangwar, and K. K. Singh, “Synthesis, spectroscopy and biological studies of nickel (II) complexes with tetradentate Schiff bases having N2O2 donor group,” Journal of Developmental Biology and Tissue Engineering, vol. 3, no. 2, pp. 13–19, 2011. View at Google Scholar
  17. A. S. Munde, A. N. Jagdale, S. M. Jadhav, and T. K. Chondhekar, “Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand,” Journal of the Serbian Chemical Society, vol. 75, no. 3, pp. 349–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. U. K. Singh, S. N. Pandeya, S. K. Sethia et al., “Synthesis and biological evaluation of some sulfonamide Schiff's bases,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 2, no. 3, pp. 216–218, 2010. View at Google Scholar
  19. N. Raman, J. Dhaveethu Raja, and A. Sakthivel, “Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies,” Journal of Chemical Sciences, vol. 119, no. 4, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Reddy, N. Patil, and S. D. Angadi, “Synthesis, characterization and antimicrobial activity of Cu(II), Co(II) and Ni(II) complexes with O, N, and S donor ligands,” E-Journal of Chemistry, vol. 5, no. 3, pp. 577–583, 2008. View at Google Scholar · View at Scopus
  21. K. Nakamato, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, New York, NY, USA, 1970.
  22. S. Joshi, V. Pawar, and V. Uma, “Synthesis, characterization and biological studies of Schiff bases metal complexes Co (II), Zn (II), Ni (II), and Mn (II) derived from amoxicillin trihydrate with various aldehydes,” International Journal of Pharma and Bio Sciences, vol. 2, no. 1, pp. 240–250, 2011. View at Google Scholar · View at Scopus
  23. J. T. Makode and A. S. Aswar, “Synthesis, characterization, biological and thermal properties of some new Schiff base complexes derived from 2-hydroxy-5-chloroacetophenone and S-methyldithiocarbazate,” Indian Journal of Chemistry A, vol. 43, no. 10, pp. 2120–2125, 2004. View at Google Scholar · View at Scopus
  24. A. K. Mapari and K. V. Mangaonkar, “Synthesis, characterization and antimicrobial activity of mixed Schiff base ligand complexes of transition metal (II) ions,” International Journal of ChemTech Research, vol. 3, no. 1, pp. 477–482, 2011. View at Google Scholar
  25. P. Venkatesh, “Synthesis, charecterisation and anti microbial activity of various Schiff base complex of zinc(II) and copper (II) ions,” Asian Journal of Pharmaceutical and Health Sciences, vol. 1, pp. 8–11, 2011. View at Google Scholar
  26. M. Revanasiddappa, T. Suresh, S. Khasim, S. C. Raghavendray, C. Basavaraja, and S. D. Angadi, “Transition metal complexes of 1, 4(2′-hydroxyphenyl-1-yl) di-imino azine: synthesis, characterization and antimicrobial studies,” E-Journal of Chemistry, vol. 5, no. 2, pp. 395–403, 2008. View at Google Scholar · View at Scopus