Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 519304, 6 pages
http://dx.doi.org/10.1155/2013/519304
Research Article

Evaluation of Thermodynamic Parameters of 2, 4-Dichlorophenoxyacetic Acid (2, 4-D) Adsorption

1Department of Chemistry, SFS College, RTM Nagpur University, Nagpur 440006, India
2Department of Chemical Technology, Laxminarayan Institute of Technology, RTM Nagpur University, Nagpur 440033, India
3School of Chemical Sciences, SRTM University, Nanded 431606, India

Received 13 June 2012; Accepted 5 October 2012

Academic Editor: J. Morillo Aguado

Copyright © 2013 A. S. Ghatbandhe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Tchobanoglous, Ed., Wastewater Engineering Treatment, Disposal and Reuse, McGraw-Hill, New York, NY, USA, 1991.
  2. J. W. Weber Jr., Ed., Physicochemical Processes, John Wiley & Sons, New York, NY, USA, 1972.
  3. G. Rexwinkel, B. B. M. Heesink, and W. P. M. van Swaaij, “Adsorption of halogenated hydrocarbons from aqueous solutions by wetted and nonwetted hydrophobic and hydrophilic sorbents: equilibria,” Journal of Chemical and Engineering Data, vol. 44, no. 6, pp. 1139–1145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Zogoroski, Adsorption of phenol onto granular activated carbon from aqueous solution [Ph.D. thesis], Departement of Environmental Science, Rutgers University, New Brunswick, Canada, 2001.
  5. J. L. Sotelo, G. Ovejero, J. A. Delgado, and I. Martínez, “Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC,” Water Research, vol. 36, pp. 599–608, 2002. View at Google Scholar
  6. C.-T. Hsieh and H. Teng, “Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions,” Carbon, vol. 38, no. 6, pp. 863–869, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study,” Dyes and Pigments, vol. 51, no. 1, pp. 25–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Mohan and S. Chander, “Single component and multi-component adsorption of metal ions by activated carbons,” Colloids and Surfaces A, vol. 177, no. 2-3, pp. 183–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Aksu and J. Yener, “The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular activated carbon,” Journal of Environmental Science and Health, vol. 34, no. 9, pp. 1777–1796, 1999. View at Publisher · View at Google Scholar
  10. D. Mohan, V. K. Gupta, S. K. Srivastava, and S. Chander, “Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste,” Colloids and Surfaces A, vol. 177, no. 2-3, pp. 169–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Chen and M. Lin, “Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies,” Water Research, vol. 35, no. 10, pp. 2385–2394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. O. Corapcioglu and C. P. Huang, “The adsorption of heavy metals onto hydrous activated carbon,” Water Research, vol. 21, no. 9, pp. 1031–1044, 1987. View at Google Scholar · View at Scopus
  13. A. Shukla, Y. H. Zhang, P. Dubey, J. L. Margrave, and S. S. Shukla, “The role of sawdust in the removal of unwanted materials from water,” Journal of Hazardous Materials, vol. 95, no. 1-2, pp. 137–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Newcombe, M. Drikas, and R. Hayes, “Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol,” Water Research, vol. 31, no. 5, pp. 1065–1073, 1997. View at Google Scholar
  15. S. H. Lin, “Adsorption of disperse dye by powdered activated carbon,” Journal of Chemical Technology and Biotechnology, vol. 57, no. 4, pp. 387–391, 1993. View at Publisher · View at Google Scholar
  16. M. Sankar, G. Sekaran, S. Sadulla, and T. Ramasami, “Removal of diazo and triphenylmethane dyes from aqueous solutions through an adsorption process,” Journal of Chemical Technology and Biotechnology, vol. 74, no. 4, pp. 337–344, 1999. View at Google Scholar
  17. C. Hsieh and H. Teng, Carbon, vol. 38, no. 6, pp. 863–869, 2000.
  18. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, and H. Yasuda, “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules,” Chemistry of Materials, vol. 8, no. 2, pp. 454–462, 1996. View at Google Scholar · View at Scopus
  19. E. Tütem, R. Apak, and C. F. Ünal, “Adsorptive removal of chlorophenols from water by bituminous shale,” Water Research, vol. 32, no. 8, pp. 2315–2324, 1998. View at Publisher · View at Google Scholar
  20. Z. Aksu and E. Kabasakal, “Batch adsorption of 2, 4-dichlorophenoxy-acetic acid (2, 4-D) from aqueous solution by granular activated carbon,” Separation and Purification Technology, vol. 35, no. 3, pp. 223–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Publisher · View at Google Scholar
  22. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966. View at Publisher · View at Google Scholar
  23. S. Susarla, G. V. Bhaskar, and S. M. Bhamidimarri Rao, “Adsorption-desorption characteristics of some phenoxyacetic acids and chlorophenols in a volcanic soil I. Equilibrium and kinetics,” Environmental Technology, vol. 14, no. 2, pp. 159–166, 1993. View at Google Scholar · View at Scopus
  24. M. Belmouden, A. Assabbane, and Y. A. Ichou, “Removal of 2.4-dichloro phenoxyacetic acid from aqueous solution by adsorption on activated carbon. A kinetic study,” Annales de Chimie Science des Matériaux, vol. 26, no. 2, pp. 79–85, 2001. View at Publisher · View at Google Scholar