Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 530135, 9 pages
http://dx.doi.org/10.1155/2013/530135
Research Article

Synthesis, Antimicrobial, and Antioxidant Activities of N-[(5′-Substituted-2′-phenyl-1H-indol-3′-yl)methylene]-5H-dibenzo[b,f]azepine-5-carbohydrazide Derivatives

1Department of Post-Graduate Studies and Research in Chemistry, Gulbarga University, Gulbarga, Karnataka 585 106, India
2Shri Prabhu Arts, Science & J M. Bohra Commerce College, Shorapur, Karnataka 585 224, India

Received 30 May 2013; Revised 26 August 2013; Accepted 28 August 2013

Academic Editor: Hasim Kelebek

Copyright © 2013 Anand R. Saundane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Biswal, U. Sahoo, S. Sethy, H. K. S. Kumar, and M. Banerjee, “Indole: the molecule of diverse biological activities,” Asian Journal of Pharmaceutical and Clinical Research, vol. 5, no. 1, pp. 1–6, 2012. View at Google Scholar · View at Scopus
  2. S. Sibel, “Antioxidant activities of synthetic indole derivatives and possible activity mechanisms,” Topics in Heterocyclic Chemistry, vol. 11, pp. 145–178, 2007. View at Publisher · View at Google Scholar
  3. R. S. Varma and P. K. Garg, “Synthesis of substituted 5-chloro-3-phenylthio-semicarbazono-2-indolinones as potential antimicrobial agents,” Acta Pharmaceutica Jugoslavica, vol. 30, no. 4, pp. 199–204, 1980. View at Google Scholar · View at Scopus
  4. S. P. Singh, V. A. Singh, and K. G. Gupta, “Synthesis of some new 5-bromo-3-arylthiosemicarbazono-2-indolinones as antimocrobial agents,” Acta Pharmaceutica Jugoslavica, vol. 36, no. 1, pp. 19–26, 1986. View at Google Scholar · View at Scopus
  5. M. G. Bhovi and G. S. Gadaginamath, “1,3-Dipolar cycloaddition reaction: synthesis and antimicrobial activity of some new 3-ethoxycarbonyl-5-methoxy-6-bromo-2-triazolylmethylindoles,” Indian Journal of Heterocyclic Chemistry, vol. 14, no. 1, pp. 15–18, 2004. View at Google Scholar · View at Scopus
  6. D. Tan, R. J. Reiter, L. C. Manchester et al., “Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger,” Current Topics in Medicinal Chemistry, vol. 2, no. 2, pp. 181–197, 2002. View at Google Scholar · View at Scopus
  7. M. A. Jordan and L. Wilson, “Microtubules as a target for anticancer drugs,” Nature Reviews Cancer, vol. 4, no. 4, pp. 253–265, 2004. View at Google Scholar · View at Scopus
  8. D. García Giménez, E. García Prado, T. Sáenz Rodríguez, A. Fernández Arche, and R. De La Puerta, “Cytotoxic effect of the pentacyclic oxindole alkaloid mitraphylline isolated from uncaria tomentosa bark on human ewing's sarcoma and breast cancer cell lines,” Planta Medica, vol. 76, no. 2, pp. 133–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. Bell, T. E. D'Ambra, V. Kumar et al., “Antinociceptive (aminoalkyl)indoles,” Journal of Medicinal Chemistry, vol. 34, no. 3, pp. 1099–1110, 1991. View at Google Scholar · View at Scopus
  10. J. D. Fischer, M. H. Song, A. B. Suttle et al., “Comparison of zafirlukast (Accolate) absorption after oral and colonie administration in humans,” Pharmaceutical Research, vol. 17, no. 2, pp. 154–159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. I. A. Leneva, R. J. Russell, Y. S. Boriskin, and A. J. Hay, “Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol,” Antiviral Research, vol. 81, no. 2, pp. 132–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. H. Rosengren, R. Jokubka, D. Tojjar et al., “Overexpression of Alpha2A-Adrenergic receptors contributes to type 2 diabetes,” Science, vol. 327, no. 5962, pp. 217–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Schindler, U.S. Patent 2, 948, 718, 1960.
  14. H. D. Revanasiddappa, B. Vijaya, L. Shivakumar, and K. Shiva Prasad, “Synthesis, characterization and antimicrobial activity of Cu(ii), Co(ii), Ni(ii), Mn(ii) complexes with desipramine,” World Journal of Chemistry, vol. 5, no. 1, pp. 18–25, 2010. View at Google Scholar
  15. H. Vijay Kumar, C. R. Gnanendra, and N. Naik, “Synthesis of amino acid analogues of 5H-dibenz[b,f]azepine and evaluation of their radical scavenging activity,” E-Journal of Chemistry, vol. 6, no. 1, pp. 125–132, 2009. View at Google Scholar · View at Scopus
  16. V. K. Honnaiah, R. R. Ambati, V. Sadineni, and N. Naik, “Evaluation of in vitro antioxidant activity of 5H-dibenz[b,f]azepine and its analogues,” Journal of Physical Science, vol. 21, no. 1, pp. 79–92, 2010. View at Google Scholar
  17. G. K. Rao, R. Kaur, and P. N. Sanjay Pai, “Synthesis and biological evaluation of dibenzo[b,f]azepine-5-carboxylic acid[1-(substituted-phenyl)-ethylidene]-hydrazides,” Der Pharma Chemica, vol. 3, no. 3, pp. 323–329, 2011. View at Google Scholar · View at Scopus
  18. S. L. Nawale and A. S. Dhake, “Synthesis and evaluation of novel thiazolidinedionederivatives for antibacterial activity,” Der Pharma Chemica, vol. 4, no. 6, pp. 2270–2277, 2012. View at Google Scholar
  19. S. Malik, P. K. Upadhyaya, and S. Miglani, “Thiazolidinediones: a plethro of biological load,” International Journal of PharmTech Research, vol. 3, no. 1, pp. 62–75, 2011. View at Google Scholar · View at Scopus
  20. S. P. Kushwaha, R. Sunil Kumar, P. Kumar, Abhishek, and K. Tripathi, “Coupling antioxidant and antidiabetic assets of 2, 4-thiazolidinedione derivatives,” Asian Journal of Pharmaceutical Analysis, vol. 1, no. 4, pp. 71–73, 2011. View at Google Scholar
  21. M. Čačić, M. Molnar, B. Šarkanj, E. Has-Schön, and V. Rajković, “Synthesis and antioxidant activity of some new coumarinyl-1,3-thiazolidine- 4-ones,” Molecules, vol. 15, no. 10, pp. 6795–6809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. R. Saundane and P. Walmik, “Synthesis, antioxidant, antimicrobial, antimycobacterial, and cytotoxic activities of azetidinone and thiazolidinone moieties linked to indole nucleus,” Journal of Chemistry, vol. 2013, Article ID 543815, 9 pages, 2013. View at Publisher · View at Google Scholar
  23. A. R. Saundane, V. Katkar, and A. V. Vaijinath, “Synthesisand antioxidant and antimicrobial activities of N-[(5’-substituted-2’-phenyl-1H-indol-3’-yl)methylene]-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amines,” Journal of Chemistry, 2013. View at Publisher · View at Google Scholar
  24. A. R. Saundane, A. V. Vaijinath, and V. Katkar, “Synthesis, antimicrobial and antioxidant activities of some novel n-[(5-substituted 2-phenylindol-3-yl)methylene]-4-phenylthiazol-2-amine derivatives,” Indian Journal Heterocyclic Chemistry, vol. 22, pp. 127–134, 2012. View at Google Scholar
  25. A. R. Saundane, M. Yarlakatti, Pr. Walmik, and V. Katkar, “Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone, azetidinone encompassing indolylthienopyrimidines,” Journal of Chemical Science, vol. 124, no. 2, pp. 469–481, 2012. View at Google Scholar
  26. K. Ranjit, G. K. Rao, and P. N. S. Pai, “Synthesis and biological evaluation of N1-[(3z)-5-substituted-2-Oxo-l, 2-Dihydro-3H-Indol-3-Ylidene]-5H-Dibenzo[b,f] Azepine-5-Carbohydrazides,” International Journal of Biological Chemistry, vol. 4, no. 1, pp. 19–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. P. Hiremath, J. S. Biradar, and M. G. Purohit, “A new route to indolo [3,2-b]isoquinolines,” Indian Journal of Chemistry B, vol. 21, pp. 249–253, 1982. View at Google Scholar
  28. Indian Pharmacopeia, New Delhi Appendix IV, Government of India, New Delhi, India, 3rd edition edition, 1985.
  29. S. Vertuani, A. Angusti, and S. Manfredini, “The antioxidants and pro-antioxidants network: an overview,” Current Pharmaceutical Design, vol. 10, no. 14, pp. 1677–1694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, “Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 6, pp. 2090–2097, 1988. View at Google Scholar · View at Scopus
  31. M. Strlič, T. Radovič, J. Kolar, and B. Pihlar, “Anti- and prooxidative properties of gallic acid in fenton-type systems,” Journal of Agricultural and Food Chemistry, vol. 50, no. 22, pp. 6313–6317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Çliş, M. Hosny, T. Khalifa, and S. Nishibe, “Secoiridoids from Fraxinus angustifolia,” Phytochemistry, vol. 33, no. 6, pp. 1453–1456, 1993. View at Google Scholar · View at Scopus
  33. M. Oyaizu, “Studies on products of the browning reaction. Antioxidative activities of browning reactionproducts prepared fromglucosamine,” Japanese Journal of Nutrition, vol. 44, no. 6, pp. 307–315, 1986. View at Google Scholar
  34. I. Gülçin, M. Elmastaş, and H. Y. Aboul-Enein, “Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies,” Phytotherapy Research, vol. 21, no. 4, pp. 354–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Gülçin, H. A. Alici, and M. Cesur, “Determination of in vitro antioxidant and radical scavenging activities of propofol,” Chemical and Pharmaceutical Bulletin, vol. 53, no. 3, pp. 281–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Halliwell, “Reactive oxygen species in living systems: source, biochemistry, and role in human disease,” American Journal of Medicine, vol. 91, supplement 3, pp. S14–S22, 1991. View at Google Scholar · View at Scopus
  37. T. C. P. Dinis, V. M. C. Madeira, and L. M. Almeida, “Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers,” Archives of Biochemistry and Biophysics, vol. 315, no. 1, pp. 161–169, 1994. View at Publisher · View at Google Scholar · View at Scopus