Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 679459, 7 pages
http://dx.doi.org/10.1155/2013/679459
Research Article

Ligand-Based Pharmacophore Modeling and Virtual Screening of RAD9 Inhibitors

1Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, India
2Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

Received 26 May 2013; Revised 16 September 2013; Accepted 17 September 2013

Academic Editor: Marco Radi

Copyright © 2013 Nirmal K. Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Kastan and J. Bartek, “Cell-cycle checkpoints and cancer,” Nature, vol. 432, no. 7015, pp. 316–323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Komatsu, T. Miyashita, H. Hang et al., “Human homologue of S. pombe RAD9 interacts with BCL-2/BCL-X(L) and promotes apoptosis,” Nature Cell Biology, vol. 2, no. 1, pp. 1–6, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. G. Broustas and H. B. Lieberman, “Contributions of RAD9 to tumorigenesis,” Journal of Cellular Biochemistry, vol. 113, no. 3, pp. 742–751, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. B. Lieberman, “RAD9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity,” Journal of Cellular Biochemistry, vol. 97, no. 4, pp. 690–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Y. Sohn and Y. Cho, “Crystal structure of the human RAD9-Hus1-RAD1 clamp,” Journal of Molecular Biology, vol. 390, no. 3, pp. 490–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Xu, L. Bai, Y. Gong, W. Xie, H. Hang, and T. Jiang, “Structure and functional implications of the human RAD9-Hus1-RAD1 cell cycle checkpoint complex,” Journal of Biological Chemistry, vol. 284, no. 31, pp. 20457–20461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Hu, Y. Liu, C. Zhang et al., “Targeted deletion of RAD9 in mouse skin keratinocytes enhances genotoxin-induced tumor development,” Cancer Research, vol. 68, no. 14, pp. 5552–5561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. B. Lieberman, J. D. Bernstock, C. G. Broustas, K. M. Hopkins, C. Leloup, and A. Zhu, “The role of RAD9 in tumorigenesis,” Journal of Molecular Cell Biology, vol. 3, no. 1, pp. 39–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Maniwa, M. Yoshimura, V. P. Bermudez et al., “Accumulation of hRAD9 protein in the nuclei of nonsmall cell lung carcinoma cells,” Cancer, vol. 103, no. 1, pp. 126–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Zhu, C. X. Zhang, and H. B. Lieberman, “RAD9 has a functional role in human prostate carcinogenesis,” Cancer Research, vol. 68, no. 5, pp. 1267–1274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Kogan, D. E. Brown, D. B. Shultz et al., “BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor α chimeric protein (PMLRARα) to block neutrophil differentiation and initiate acute leukemia,” Journal of Experimental Medicine, vol. 193, no. 4, pp. 531–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Jäger, U. Herzer, J. Schenkel, and H. Weiher, “Overexpression of BCL-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice,” Oncogene, vol. 15, no. 15, pp. 1787–1795, 1997. View at Google Scholar · View at Scopus
  13. P. Naik, J. Karrim, and D. Hanahan, “The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors,” Genes and Development, vol. 10, no. 17, pp. 2105–2116, 1996. View at Google Scholar · View at Scopus
  14. S. Pelengaris, M. Khan, and G. I. Evan, “Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression,” Cell, vol. 109, no. 3, pp. 321–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. U. A. Sartorius and P. H. Krammer, “Upregulation of BCL-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines,” International Journal of Cancer, vol. 97, no. 5, pp. 584–592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ziegler, G. H. Luedke, D. Fabbro, K.-H. Altmann, R. A. Stahel, and U. Zangemeister-Wittke, “Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the BCL-2 coding sequence,” Journal of the National Cancer Institute, vol. 89, no. 14, pp. 1027–1036, 1997. View at Google Scholar · View at Scopus
  17. D. G. Wang, C. F. Johnston, J. M. Sloan, and K. D. Buchanan, “Expression of BCL-2 in lung neuroendocrine tumours: comparison with p53,” The Journal of Pathology, vol. 184, pp. 247–251, 1998. View at Google Scholar
  18. Z. Huang, “BCL-2 family proteins as targets for anticancer drug design,” Oncogene, vol. 19, no. 56, pp. 6627–6631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Balunas and A. D. Kinghorn, “Drug discovery from medicinal plants,” Life Sciences, vol. 78, no. 5, pp. 431–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Newman, G. M. Cragg, and K. M. Snader, “The influence of natural products upon drug discovery,” Natural Product Reports, vol. 17, no. 3, pp. 215–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Butler, “The role of natural product chemistry in drug discovery,” Journal of Natural Products, vol. 67, no. 12, pp. 2141–2153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Samuelsson, Drugs of Natural Origin: A Textbook of Pharmacognosy, Swedish Pharmaceutical Press, Stockholm, Sweden, 5th edition, 2004.
  23. J. Fei, L. Zhou, T. Liu, and X.-Y. Tang, “Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors,” International Journal of Medical Sciences, vol. 10, no. 3, pp. 265–275, 2013. View at Google Scholar
  24. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar · View at Scopus
  25. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Sali and T. L. Blundell, “Comparative protein modelling by satisfaction of spatial restraints,” Journal of Molecular Biology, vol. 234, no. 3, pp. 779–815, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Eswar, B. Webb, M. A. Marti-Renom et al., “Comparative protein structure modeling using MODELLER,” in Current Protocols in Bioinformatics, vol. 15, pp. 5.6.1–5.6.30, Wiley, 2006. View at Google Scholar · View at Scopus
  28. R. A. Laskowski, J. A. C. Rullmann, M. W. MacArthur, R. Kaptein, and J. M. Thornton, “AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR,” Journal of Biomolecular NMR, vol. 8, no. 4, pp. 477–486, 1996. View at Google Scholar · View at Scopus
  29. S. Lyskov and J. J. Gray, “The RosettaDock server for local protein-protein docking,” Nucleic Acids Research, vol. 36, pp. W233–W238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Wolber and T. Langer, “LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters,” Journal of Chemical Information and Modeling, vol. 45, no. 1, pp. 160–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, “PubChem: a public information system for analyzing bioactivities of small molecules,” Nucleic Acids Research, vol. 37, no. 2, pp. W623–W633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Irwin and B. K. Shoichet, “ZINC—a free database of commercially available compounds for virtual screening,” Journal of Chemical Information and Modeling, vol. 45, no. 1, pp. 177–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Knox, V. Law, T. Jewison et al., “DrugBank 3.0: a comprehensive resource for 'Omics' research on drugs,” Nucleic Acids Research, vol. 39, no. 1, pp. D1035–D1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. G. M. Morris, H. Ruth, W. Lindstrom et al., “Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus