Journal of Chemistry

Journal of Chemistry / 2013 / Article

Research Article | Open Access

Volume 2013 |Article ID 682186 | https://doi.org/10.1155/2013/682186

A. A. El-Bindary, A. Z. El-Sonbati, M. A. Diab, M. K. Abd El-Kader, "Potentiometric and Thermodynamic Studies of Some Schiff-Base Derivatives of 4-Aminoantipyrine and Their Metal Complexes", Journal of Chemistry, vol. 2013, Article ID 682186, 6 pages, 2013. https://doi.org/10.1155/2013/682186

Potentiometric and Thermodynamic Studies of Some Schiff-Base Derivatives of 4-Aminoantipyrine and Their Metal Complexes

Academic Editor: Dimosthenis L. Giokas
Received12 Jun 2012
Accepted20 Sep 2012
Published12 Nov 2012

Abstract

The proton-ligand dissociation constant of 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-phenol () and 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-benzoic acid () and metal-ligand stability constants of their complexes with metal ions (Mn2+, Co2+, Ni2+, and Cu2+) have been determined potentiometrically in 0.1 mol·dm−3 KCl and 10% (by volume) ethanol-water mixture and at 298, 308, and 318 K. The stability constants of the formed complexes increase in the order Mn2+, Co2+, Ni2+, and Cu2+. The effect of temperature was studied, and the corresponding thermodynamic parameters (, , and ) were derived and discussed. The dissociation process is nonspontaneous, endothermic, and entropically unfavourable. The formation of the metal complexes has been found to be spontaneous, endothermic, and entropically favourable.

1. Introduction

Schiff-base coordination complexes have attracted great attention over the past decades due not only to their facile syntheses, their wide application, and the accessibility of diverse structural modifications, but also to their biological modeling applications, catalysis, design of molecular ferromagnets, and materials chemistry [16]. It is well known that N atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules [7]. The Schiff bases of 4-aminoantipyrine and their coordination complexes have been extensively investigated because of their biological, clinical, pharmacological, analytical and material applications [811]. Also some drugs showed increased activity when administered as metal chelate rather than as free organic compounds [12, 13]. In continuation of earlier work [1418], we report here the dissociation constant of 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-phenol () and 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-benzoic acid () and the stability constants of their complexes with Mn2+, Co2+, Ni2+, and Cu2+ at different temperatures. Furthermore, the corresponding thermodynamic functions of complexation are evaluated and discussed.

2. Experimental

4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-phenol () and 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino)-benzoic acid () (Figure 1) were prepared by refluxing a mixture of hot solution of 4-aminoantipyrine (0.1 mmol) and 4-hydroxyaniline or 4-carboxyaniline (0.1 mmol) in 50 cm3 ethanol for 2 h [19, 20]. The formed solid product was separated by filtration, purified by crystallization from ethanol, washed with diethyl ether, and dried in a vacuum over anhydrous calcium chloride.

A ligand solution (0.001 mol·dm−3) was prepared by dissolving an accurately weighed amount of the solid in ethanol (Analar). Metal ion solutions (0.0001 mol·dm−3) were prepared from Analar metal chlorides in bidistilled water and standardized with EDTA [20]. Solutions of 0.001 mol·dm−3 HCl and 1 mol·dm−3 KCl were also prepared in bidistilled water. A carbonate-free sodium hydroxide solution in 10% (by volume) ethanol-water mixture was used as titrant and standardized against oxalic acid (Analar).

The apparatus, general conditions, and methods of calculation were the same as in previous work [1518]. The following mixtures (i)–(iii) were prepared and titrated potentiometrically at 298 K against standard 0.002 mol·dm−3 NaOH in a 10% (by volume) ethanol-water mixture:(i)5 cm3 0.001 mol·dm−3 HCl + 5 cm3 1 mol·dm−3 KCl + 5 cm3 ethanol.(ii)5 cm3 0.001 mol·dm−3 HCl + 5 cm3 1 mol·dm−3 KCl + 5 cm3 0.00l mol·dm−3 ligand. (iii)5 cm3 0.001 mol·dm−3 HCl + 5 cm3 l mol·dm−3 KCl + 5 cm3 0.001 mol·dm−3 ligand + 10 cm3 0.0001 mol·dm−3 metal chloride.

For each mixture, the volume was made up to 50  cm3 with bidistilled water before the titration. These titrations were repeated for temperatures of 308 K and 318 K. The temperature was controlled to within ± 0.05 K by circulating thermostated water (Neslab 2 RTE 220) through the outer jacket of the vessel. The pH measurements were performed with a Metrohm 836 Titrando (KF & Potentiometric Titrator) equipped with a combined porolyte electrode. The pH-meter readings in the nonaqueous medium were corrected [21]. The electrode system was calibrated according to the method of Irving et al. [22]. All titrations have been carried out between pH 3.0 and 11.0 and under nitrogen atmosphere.

3. Results and Discussion

The average number of the protons associated with ligands (L1 and L2) at different pH values, , was calculated from the titration curves of the acid in the absence and presence of ligands (L1 and L2). Apply (1): where is the number of available protons in ligands ( and ) () and and are the volumes of alkali required to reach the same pH on the titration curve of hydrochloric acid and reagent, respectively, is the initial volume (50 cm3) of the mixture, is the total concentration of the reagent, is the normality of sodium hydroxide solution, and is the initial concentration of the free acid. Thus, the formation curves ( versus pH) for the proton-ligand systems were constructed and found to extend between 0 and 1 in the scale. This means that ligands ( and ) have one ionizable proton (the enolized hydrogen ion of the –OH and –COOH group, ), respectively. Different computational methods [23] were applied to evaluate the dissociation constant. Three replicate titrations were performed; the average values obtained are listed in Tables 1 and 2. The completely protonated form of ligands ( and ) has one dissociable proton that dissociates in the measurable pH range.


DissociationGibbs energyEnthalpyEntropy
/KconstantkJ mol−1kJ mol−1J mol−1 K−1
pKH

2989.25 (0.10)52.7770.56
3089.07 (0.09)53.4831.7570.57
3188.90 (0.09)54.1970.56

Standard deviations are given in parentheses.

/KDissociation 
constant
Gibbs energy 
kJ mol−1
Enthalpy 
kJ mol−1
Entropy 
J mol−1 K−1
pKH

2984.26 (0.09)24.3124.92
3084.09 (0.09)24.1231.7324.72
3183.91 (0.08)23.8124.92

Standard deviations are given in parentheses.

The formation curves for the metal complexes were obtained by plotting the average number of ligands attached per metal ion () versus the free ligands exponent (pL), according to Irving and Rossotti [24]. The average number of the reagent molecules attached per metal ion, , and free ligands exponent, pL, can be calculated using (2) and: where is the total concentration of the metal ion present in the solution and is the overall proton-reagent stability constant. , , and are the volumes of alkali required to reach the same pH on the titration curves of hydrochloric acid, organic ligand, and complex, respectively. These curves were analyzed, and the successive metal-ligand stability constants were determined using different computational methods [25, 26]. The values of the stability constants (log  and log ) are given in Tables 3 and 4. The following general remarks can be pointed out.(i)The maximum value of was ~2 indicating the formation of 1 : 1 and 1 : 2 (metal : ligand) complexes only [27].(ii)The metal ion solution used in the present study was very dilute ( mol·dm−3); hence there was no possibility of formation of polynuclear complexes [28, 29].(iii)The metal titration curves were displaced to the right-hand side of the ligand titration curves along the volume axis, indicating proton release upon complex formation of the metal ion with the ligand. The large decrease in pH for the metal titration curves relative to ligand titration curves points to the formation of strong metal complexes [30, 31].(iv)For the same ligand at constant temperature, the stability of the chelates increases in the order Mn2+, Co2+, Ni2+, and Cu2+ [19, 32, 33]. This order largely reflects that the stability of Cu2+ complexes is considerably larger than those of other metals of the 3d series. Under the influence of both the polarizing ability of the metal ion [34] and the ligand field [35] Cu2+ will receive some extra stabilization due to tetragonal distortion of octahedral symmetry in its complexes. The greater stability of Cu2+ complexes is produced by the well-known Jahn-Teller effect [35].


298 K308 K318 K
log log log log log log

Mn2+6.84 (0.08)6.04 (0.11)7.02 (0.09)6.22 (0.10)7.19 (0.10)6.40 (0.11)
Co2+6.95 (0.09)6.13 (0.10)7.13 (0.09)6.31 (0.10)7.31 (0.11)6.48 (0.11)
Ni2+7.02 (0.09)6.19 (0.09)7.20 (0.10)6.37 (0.09)7.38 (0.11)6.54 (0.10)
Cu2+7.15 (0.09)6.34 (0.09)7.34 (0.09)6.52 (0.10)7.53 (0.11)6.70 (0.10)

Standard deviations are given in parentheses.

298 K308 K318 K
log log log log log log

Mn2+7.33 (0.08)6.74 (0.09)7.50 (0.09)6.90 (0.10)7.67 (0.10)7.07 (0.10)
Co2+7.54 (0.09)6.85 (0.10)7.72 (0.10)7.02 (0.10)7.90 (0.10)7.20 (0.11)
Ni2+7.63 (0.09)6.92 (0.10)7.80 (0.11)7.10 (0.09)7.98 (0.11)7.27 (0.10)
Cu2+7.78 (0.09)7.07 (0.10)7.97 (0.10)7.26 (0.10)8.16 (0.11)7.44 (0.10)

Standard deviations are given in parentheses.

The dissociation constant () for ligands ( and ), as well as the stability constants of its complexes with Mn2+, Co2+, Ni2+, and Cu2+, has been evaluated at 298 K, 308 K, and 318 K and is given in Tables 1, 2, 5, and 6, respectively. The enthalpy () for the dissociation and complexation process was calculated from the slope of the plot or log versus using the graphical representation of van't Hoff equations (3) and (4): or From the and values one can deduce the entropy using the well-known relationships (3) and (5): All thermodynamic parameters of the dissociation process of ligands ( and ) are recorded in Tables 1 and 2. From these results the following conclusions can be made.(i)The values decrease with increasing temperature; that is, the acidity of the ligand increases [17].(ii)A positive value of indicates that the process is endothermic.(iii)A large positive value of indicates that the dissociation process is not spontaneous [36].(iv)A negative value of is obtained due to the increased order as a result of the solvation process.


/KGibbs energy/kJ mol−1Enthalpy/kJ mol−1Entropy/J mol−1 K−1

29839.0334.46237.52225.21
Mn2+30841.3936.6831.7532.65237.50225.10
31843.7838.97237.52225.21

29839.6634.98242.64223.92
Co2+30842.0537.2132.6431.75242.52223.91
31844.5139.46242.64223.92

29840.0635.32243.98225.07
Ni2+30842.4637.5732.6531.75243.87225.06
31844.9439.82243.98225.07

29840.7936.18252.55230.96
Cu2+30843.2938.4534.4632.65252.43230.84
31845.8540.79252.55230.96


/KGibbs energy/kJ mol−1Enthalpy/kJ mol−1Entropy/J mol−1 K−1

29841.8238.46243.82229.45
Mn2+30844.2340.6930.8329.92243.72229.25
31846.7043.05243.82229.45

29843.0239.09253.93237.64
Co2+30845.5341.3932.6531.73253.82237.44
31848.0143.83253.93237.65

29843.5439.48252.58239.05
Ni2+30845.9941.8731.7331.75252.38239.04
31848.5944.27252.58239.05

29844.3940.34264.61248.00
Cu2+30847.4842.8134.4633.56264.50247.99
31849.68
45.30264.62248.05

All the thermodynamic parameters of the stepwise stability constants of complexes are recorded in Tables 5 and 6. It is known that the divalent metal ions exist in solution as octahedrally hydrated species [26], and the obtained values of and can then be considered as the sum of two contributions: (a) release of H2O molecules and (b) metal-ligand bond formation. Examination of these values shows the following.(i)The stability constants (log  and log ) for ligands ( and ) complexes increase with increasing temperature; that is, its stability constants increase with increasing temperature [37].(ii)The negative value of for the complexation process suggests the spontaneous nature of such processes [38].(iii)The values are positive, meaning that these processes are endothermic and favourable at higher temperature.(iv)The values for the ligand complexes are positive, confirming that the complex formation is entropically favourable [16].

References

  1. S. Kotha, “The building block approach to unusual alpha-amino acid derivatives and peptides,” Accounts of Chemical Research, vol. 36, no. 5, pp. 342–351, 2003. View at: Google Scholar
  2. M. J. O'Donnell, “The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters,” Accounts of Chemical Research, vol. 37, pp. 506–517, 2004. View at: Publisher Site | Google Scholar
  3. H.-C. Wu, P. Thanasekaran, C.-H. Tsai et al., “Self-assembly, reorganization, and photophysical properties of silver(I)-Schiff-base molecular rectangle and polymeric array species,” Inorganic Chemistry, vol. 45, pp. 295–303, 2006. View at: Publisher Site | Google Scholar
  4. M. Zhao, C. Zhong, C. Stern, A. G. M. Barrett, and B. M. Hoffman, “Synthesis and magnetic properties comparison of M-Cu(II) and M-VO(II) Schiff base-porphyrazine complexes: what is the mechanism for spin-coupling?” Journal of the American Chemical Society, vol. 127, no. 27, pp. 9769–9775, 2005. View at: Publisher Site | Google Scholar
  5. J. L. Sessler, E. Tomat, and V. M. Lynch, “Positive homotropic allosteric binding of silver(I) cations in a Schiff base oligopyrrolic macrocycle,” Journal of the American Chemical Society, vol. 128, no. 13, pp. 4184–4185, 2006. View at: Publisher Site | Google Scholar
  6. S. Das, A. Nag, D. Goswami, and P. K. Bharadwaj, “Zinc(II)- and copper(I)-mediated large two-photon absorption cross sections in a bis-cinnamaldiminato Schiff base,” Journal of the American Chemical Society, vol. 128, no. 2, pp. 402–403, 2006. View at: Publisher Site | Google Scholar
  7. K. Singh, M. S. Barwa, and P. Tyagi, “Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine,” European Journal of Medicinal Chemistry, vol. 42, no. 3, pp. 394–402, 2007. View at: Publisher Site | Google Scholar
  8. T. Rosu, M. Negoiu, S. Pasculescu, E. Pahontu, D. Poirier, and A. Gulea, “Metal-based biologically active agents: synthesis, characterization, antibacterial and antileukemia activity evaluation of Cu(II), V(IV) and Ni(II) complexes with antipyrine-derived compounds,” European Journal of Medicinal Chemistry, vol. 45, pp. 774–781, 2010. View at: Google Scholar
  9. G. Rajendran and G. S. Sreeletha, “Synthesis, characterization and antimicrobial studies of some mixed ligand complexes of lanthanide(III) ions,” Asian Journal of Chemistry, vol. 14, no. 3-4, pp. 1639–1645, 2002. View at: Google Scholar
  10. Y. Zheng, J. Lin, Y. Liang et al., “A novel terbium (III) beta-diketonate complex as thin film for optical device application,” Materials Letters, vol. 54, no. 5-6, pp. 424–429, 2002. View at: Publisher Site | Google Scholar
  11. N. Raman, A. Kulandaisamy, A. Shunmugasundaram, and K. Jeyasubramanian, “Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 131–135, 2001. View at: Publisher Site | Google Scholar
  12. T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, and A. Gulea, “Some new Cu(II) complexes containing an ON donor Schiff base: synthesis, characterization and antibacterial activity,” Polyhedron, vol. 30, pp. 154–162, 2011. View at: Google Scholar
  13. A. Furst and R. T. Haro, Progress in Experimental Tumor Research, vol. 12, p. 102, 1969.
  14. F. Borges, C. Guimarães, J. L. F. C. Lima, I. Pinto, and S. Reis, “Potentiometric studies on the complexation of copper(II) by phenolic acids as discrete ligand models of humic substances,” Talanta, vol. 66, no. 3, pp. 670–673, 2005. View at: Publisher Site | Google Scholar
  15. A. M. Khedr, A. A. El-Bindary, and A. M. Abd El-Gawad, “Stereochemistry of new nitrogen-containing heterocyclic compounds 14. Potentiometric and thermodynamic studies of 5-(phenylazo)-8-hydroxyquinolines and their metal complexes,” Chemical Papers, vol. 59, no. 5, pp. 336–342, 2005. View at: Google Scholar
  16. A. A. Al-Sarawy, A. A. El-Bindary, A. Z. El-Sonbati, and M. M. Mokpel, “Potentiometric and thermodynamic studies of azosulfonamide drugs,” Polish Journal of Chemistry, vol. 80, no. 2, pp. 289–295, 2006. View at: Google Scholar
  17. A. T. Mubarak, A. S. Al-Shihri, H. M. Nassef, and A. A. El-Bindary, “Potentiometric and thermodynamic studies of vanillin and its metal complexes,” Journal of Chemical and Engineering Data, vol. 55, no. 12, pp. 5539–5542, 2010. View at: Publisher Site | Google Scholar
  18. A. T. Mubarak and A. A. El-Bindary, “Potentiometric and thermodynamic studies of 4-(1 H -Indol-3-yl)butanoic acid and its metal complexes,” Journal of Chemical and Engineering Data, vol. 55, no. 12, pp. 5543–5546, 2010. View at: Publisher Site | Google Scholar
  19. G. G. Mohamed, M. M. Omar, and A. A. Ibrahim, “Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization,” European Journal of Medicinal Chemistry, vol. 44, no. 12, pp. 4801–4812, 2009. View at: Publisher Site | Google Scholar
  20. G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Deney, Vogel’s Textbook of Quantitative Chemical Analysis, Longman, London, UK, 5th edition, 1989.
  21. R. G. Bates, M. Paabo, and R. A. Robinson, “Interpretation of pH measurements in alcohol-water solvents,” Journal of Physical Chemistry, vol. 67, no. 9, pp. 1833–1838, 1963. View at: Google Scholar
  22. H. M. Irving, M. G. Miles, and L. D. Pettit, “A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode,” Analytica Chimica Acta, vol. 38, pp. 475–488, 1967. View at: Google Scholar
  23. H. M. Irving and H. S. Rossotti, “The calculation of formation curves of metal complexes from pH titration curves in mixed solvents,” Journal of the Chemical Society, pp. 2904–2910, 1954. View at: Google Scholar
  24. H. Irving and H. S. Rossotti, “Methods for computing successive stability constants from experimental formation curves,” Journal of the Chemical Society, pp. 3397–3405, 1953. View at: Google Scholar
  25. F. J. C. Rossotti and H. S. Rossotti, Acta Chemica Scandinavica, vol. 9, pp. 1166–1176, 1955.
  26. M. T. Beck and I. Nagybal, Chemistry of Complex Equilibrium, Wiley, New York, NY, USA, 1990.
  27. M. M. Khalil, A. M. Radalla, and A. G. Mohamed, “Potentiometric investigation on complexation of divalent transition metal ions with some zwitterionic buffers and triazoles,” Journal of Chemical and Engineering Data, vol. 54, no. 12, pp. 3261–3272, 2009. View at: Publisher Site | Google Scholar
  28. P. Sanyal and G. P. Sengupta, “Potentiometric studies of complex formation of some trivalent rare earths with p,p'-bromosulphonosalicylidene anil,” Journal of the Indian Chemical Society, vol. 67, no. 4, pp. 342–344, 1990. View at: Google Scholar
  29. S. Sridhar, P. Kulanthaipandi, P. Thillaiarasu, V. Thanikachalam, and G. Manikandan, “Protonating and chelating efficiencies of some biologically important thiocarbonohydrazides in 60%(v/v) ethanol-water system by potentiometric and spectrophotometric methods,” World Journal of Chemistry, vol. 4, pp. 133–140, 2009. View at: Google Scholar
  30. V. D. Athawale and V. Lele, “Stability constants and thermodynamic parameters of complexes of lanthanide ions and (±)-norvaline,” Journal of Chemical and Engineering Data, vol. 41, no. 5, pp. 1015–1019, 1996. View at: Google Scholar
  31. V. D. Athawale and S. S. Nerkar, “Stability constants of complexes of divalent and rare Earth metals with substituted salicynals,” Monatshefte fur Chemie, vol. 131, no. 3, pp. 267–276, 2000. View at: Google Scholar
  32. G. A. Ibañez and G. M. Escandar, “Complexation of cobalt(II), nickel(II), and zinc(II) ions with mono and binucleating azo compounds: a potentiometric and spectroscopic study in aqueous solution,” Polyhedron, vol. 17, no. 25-26, pp. 4433–4441, 1998. View at: Google Scholar
  33. W. U. Malik, G. D. Tuli, and R. D. Madan, Selected Topics in Inorganic Chemistry, S. Chand & Company LTD, New Delhi, 3rd edition, 1984.
  34. F. R. Harlly, R. M. Burgess, and R. M. Alcock, Solution Equilibria, Ellis Harwood, Chichester, UK, 1980.
  35. L. E. Orgel, An Introduction to Transition Metal Chemistry Ligand Field Theory, Methuen, London, 1966.
  36. A. Bebot-Bringaud, C. Dange, N. Fauconnier, and C. Gerard, “31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+,” Journal of Inorganic Biochemistry, vol. 75, pp. 71–78, 1999. View at: Google Scholar
  37. A. A. Al-Sarawy, A. A. El-Bindary, A. Z. El-Sonbati, and T. Y. Omar, “Potentiometric and thermodynamic studies of 3-(4-methoxyphenyl)-5- azorhodanine derivatives and their metal complexes with some transition metals—14,” Chemical Papers, vol. 59, no. 4, pp. 261–266, 2005. View at: Google Scholar
  38. A. T. Mubarak, A. Z. El-Sonbati, and A. A. El-Bindary, “Potentiometric and conductometric studies on the complexes of some transition metals with rhodanine azosulfonamide derivatives—11,” Chemical Papers, vol. 58, no. 5, pp. 320–323, 2004. View at: Google Scholar

Copyright © 2013 A. A. El-Bindary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views2162
Downloads1337
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.