Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 697850, 10 pages
http://dx.doi.org/10.1155/2013/697850
Review Article

Boron-Fluorine Photosensitizers for Photodynamic Therapy

Hubei Key Laboratory of Natural Products Research and Development, College of Chemistry and Life Science, China Three Gorges University, Yichang, Hubei 443002, China

Received 18 May 2013; Accepted 20 August 2013

Academic Editor: Augusto C. Tome

Copyright © 2013 Liang Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Pandey, “Recent advances in photodynamic therapy,” Journal of Porphyrins and Phthalocyanines, vol. 4, pp. 368–373, 2000. View at Google Scholar
  2. J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable photosensitizers for imaging and therapy,” Chemical Reviews, vol. 110, no. 5, pp. 2839–2857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. H. Sibata, V. C. Colussi, N. L. Oleinick, and T. J. Kinsella, “Photodynamic therapy in oncology,” Expert Opinion on Pharmacotherapy, vol. 2, no. 6, pp. 917–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. K. Pandey, L. N. Goswami, Y. Chen et al., “Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy,” Lasers in Surgery and Medicine, vol. 38, no. 5, pp. 445–467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Detty, S. L. Gibson, and S. J. Wagner, “Current clinical and preclinical photosensitizers for use in photodynamic therapy,” Journal of Medicinal Chemistry, vol. 47, no. 16, pp. 3897–3915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncology, vol. 5, no. 8, pp. 497–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Bonnett and G. Martínez, “Photobleaching of sensitisers used in photodynamic therapy,” Tetrahedron, vol. 57, no. 47, pp. 9513–9547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. J. Dougherty, C. J. Gomer, B. W. Henderson et al., “Photodynamic therapy,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 889–905, 1998. View at Google Scholar · View at Scopus
  9. F. Jensen and C. S. Foote, “Reaction of 4-phenyl-1,2,4-triazoline-3,5-dione with substituted butadienes. A nonconcerted Diels-Alder reaction,” Journal of the American Chemical Society, vol. 109, no. 21, pp. 6376–6385, 1987. View at Google Scholar · View at Scopus
  10. J. P. Celli, B. Q. Spring, I. Rizvi et al., “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chemical Reviews, vol. 110, no. 5, pp. 2795–2838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Kessel, “Determinants of photosensitization by purpurins,” Photochemistry and Photobiology, vol. 50, no. 2, pp. 169–174, 1989. View at Google Scholar · View at Scopus
  12. A. R. Morgan, G. M. Garbo, R. W. Keck, and S. H. Selman, “New photosensitizers for photodynamic therapy: combined effect of metallopurpurin derivatives and light on transplantable bladder tumors,” Cancer Research, vol. 48, no. 1, pp. 194–198, 1988. View at Google Scholar · View at Scopus
  13. T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, and T. Nagano, “Highly efficient and photostable photosensitizer based on BODIPY chromophore,” Journal of the American Chemical Society, vol. 127, no. 35, pp. 12162–12163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chemical Society Reviews, vol. 24, no. 1, pp. 19–33, 1995. View at Google Scholar · View at Scopus
  15. M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chemical Society Reviews, vol. 40, no. 1, pp. 340–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Chen, A. Graham, W. Potter et al., “Bacteriopurpurinimides: highly stable and potent photosensitizers for photodynamic therapy,” Journal of Medicinal Chemistry, vol. 45, no. 2, pp. 255–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Li, S. K. Pandey, A. Graham et al., “Functionalization of OEP-based benzochlorins to develop carbohydrate- conjugated photosensitizers. Attempt to target β-galactoside-recognized proteins,” Journal of Organic Chemistry, vol. 69, no. 1, pp. 158–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. He, P.-C. Lo, S.-L. Yeung, W.-P. Fong, and D. K. P. Ng, “Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties,” Chemical Communications, vol. 47, no. 16, pp. 4748–4750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wainwright, “Non-porphyrin photosensitizers in biomedicine,” Chemical Society Reviews, vol. 25, no. 5, pp. 351–359, 1996. View at Google Scholar · View at Scopus
  20. M. E. Rodriguez, F. Morán, A. Bonansea et al., “A comparative study of the photophysical and phototoxic properties of octakis(decyloxy)phthalocyaninato zinc(II), incorporated in a hydrophilic polymer, in liposomes and in non-ionic micelles,” Photochemical and Photobiological Sciences, vol. 2, no. 10, pp. 988–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Chen, A. Gryshuk, S. Achilefu et al., “A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy,” Bioconjugate Chemistry, vol. 16, no. 5, pp. 1264–1274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Pietkiewicz, K. Zielińska, J. Saczko, J. Kulbacka, M. Majkowski, and K. A. Wilk, “New approach to hydrophobic cyanine-type photosensitizer delivery using polymeric oil-cored nanocarriers: hemolytic activity, in vitro cytotoxicity and localization in cancer cells,” European Journal of Pharmaceutical Sciences, vol. 39, no. 5, pp. 322–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. N. Dikshit, K. P. Sharma, and H. K. Sharma, “Kinetic aspects of nitrogen loss in presence of ammonium persulphate and mixed fertilizers in soils,” Asian Journal of Chemistry, vol. 21, no. 1, pp. 149–154, 2009. View at Google Scholar · View at Scopus
  24. P. F. Santos, L. V. Reis, P. Almeida, J. P. Serrano, A. S. Oliveira, and L. F. Vieira Ferreira, “Efficiency of singlet oxygen generation of aminosquarylium cyanines,” Journal of Photochemistry and Photobiology A, vol. 163, no. 1-2, pp. 267–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Kanofsky and P. D. Sima, “Preferential cytotoxicity for multidrug-resistant K562 cells using the combination of a photosensitizer and a cyanine dye,” Journal of Photochemistry and Photobiology B, vol. 54, no. 2-3, pp. 136–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Ramaiah, I. Eckert, K. T. Arun, L. Weidenfeller, and B. Epe, “Squaraine dyes for photodynamic therapy: study of their cytotoxicity and genotoxicity in bacteria and mammalian cells,” Photochemistry and Photobiology, vol. 76, pp. 672–677, 2002. View at Google Scholar
  27. D. Ramaiah, I. Eckert, K. T. Arun, L. Weidenfeller, and B. Epe, “Squaraine dyes for photodynamic therapy: mechanism of cytotoxicity and dna damage induced by halogenated squaraine dyes plus light (>600 nm),” Photochemistry and Photobiology, vol. 79, pp. 99–104, 2004. View at Google Scholar
  28. A. D. Quartarolo, E. Sicilia, and N. Russo, “On the potential use of squaraine derivatives as photosensitizers in photodynamic therapy: a TDDFT and RICC2 survey,” Journal of Chemical Theory and Computation, vol. 5, no. 7, pp. 1849–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Beverina, M. Crippa, M. Landenna et al., “Assessment of water-soluble π-extended squaraines as one- and two-photon singlet oxygen photosensitizers: design, synthesis, and characterization,” Journal of the American Chemical Society, vol. 130, no. 6, pp. 1894–1902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Ramaiah, A. Joy, N. Chandrasekhar, N. V. Eldho, S. Das, and M. V. George, “Halogenated squaraine dyes as potential photochemotherapeutic agents. Synthesis and study of photophysical properties and quantum efficiencies of singlet oxygen generation,” Photochemistry and Photobiology, vol. 65, no. 5, pp. 783–790, 1997. View at Google Scholar · View at Scopus
  31. E. Arunkumar, P. K. Sudeep, P. V. Kamat, B. C. Noll, and B. D. Smith, “Singlet oxygen generation using iodinated squaraine and squaraine-rotaxane dyes,” New Journal of Chemistry, vol. 31, no. 5, pp. 677–683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Yukruk, A. L. Dogan, H. Canpinar, D. Guc, and E. U. Akkaya, “Water-soluble green perylenediimide (PDI) dyes as potential sensitizers for photodynamic therapy,” Organic Letters, vol. 7, no. 14, pp. 2885–2887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Icli, S. Demiç, B. Dindar, A. O. Doroshenko, and C. Timur, “Photophysical and photochemical properties of a water-soluble perylene diimide derivative,” Journal of Photochemistry and Photobiology A, vol. 136, no. 1-2, pp. 15–24, 2000. View at Google Scholar · View at Scopus
  34. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chemical Society Reviews, vol. 42, pp. 77–88, 2013. View at Google Scholar
  35. S. G. Awuah and Y. You, “Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy,” RSC Advances, vol. 2, pp. 11169–11183, 2012. View at Google Scholar
  36. J. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher, and D. F. O'Shea, “Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour,” Chemical Communications, no. 17, pp. 1862–1863, 2002. View at Google Scholar · View at Scopus
  37. A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M. Gallagher, and D. F. O'Shea, “In vitro demonstration of the heavy-atom effect for photodynamic therapy,” Journal of the American Chemical Society, vol. 126, no. 34, pp. 10619–10631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Ortiz, A. R. Agarrabeitia, G. Duran-Sampedro et al., “Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation,” Tetrahedron, vol. 68, no. 4, pp. 1153–1162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Atilgan, Z. Ekmekci, A. L. Dogan, D. Guc, and E. U. Akkaya, “Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy,” Chemical Communications, no. 42, pp. 4398–4400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. Hamblin, J. L. Miller, I. Rizvi, B. Ortel, E. V. Maytin, and T. Hasan, “Pegylation of a chlorine6 polymer conjugate increases tumor targeting of photosensitizer,” Cancer Research, vol. 61, no. 19, pp. 7155–7162, 2001. View at Google Scholar · View at Scopus
  41. S. K. Sahoo, T. Sawa, J. Fang et al., “Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity,” Bioconjugate Chemistry, vol. 13, no. 5, pp. 1031–1038, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Erbas, A. Gorgulu, M. Kocakusakogullari, and E. U. Akkaya, “Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers,” Chemical Communications, no. 33, pp. 4956–4958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. O. McDonnell, M. J. Hall, L. T. Allen, A. Byrne, W. M. Gallagher, and D. F. O'Shea, “Supramolecular photonic therapeutic agents,” Journal of the American Chemical Society, vol. 127, no. 47, pp. 16360–16361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Ozlem and E. U. Akkaya, “Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy,” Journal of the American Chemical Society, vol. 131, no. 1, pp. 48–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. M. Guldi and M. Prato, “Excited-state properties of C60 fullerene derivatives,” Accounts of Chemical Research, vol. 33, no. 10, pp. 695–703, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. J. W. Arbogast, A. P. Darmanyan, C. S. Foote et al., “Photophysical properties of C60,” Journal of Physical Chemistry, vol. 95, no. 1, pp. 11–12, 1991. View at Google Scholar · View at Scopus
  47. R. Ziessel, B. D. Allen, D. B. Rewinska, and A. Harriman, “Selective triplet-state formation during charge recombination in a fullerene/Bodipy molecular dyad (Bodipy = borondipyrromethene),” Chemistry, vol. 15, no. 30, pp. 7382–7393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. T. W. Chamberlain, E. S. Davies, A. N. Khlobystov, and N. R. Champness, “Multi-electron-acceptor dyad and triad systems based on perylene bisimides and fullerenes,” Chemistry, vol. 17, no. 13, pp. 3759–3767, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. D. González-Rodríguez, T. Torres, D. M. Guldi, J. Rivera, M. Á. Herranz, and L. Echegoyen, “Subphthalocyanines: tuneable molecular scaffolds for intramolecular electron and energy transfer processes,” Journal of the American Chemical Society, vol. 126, no. 20, pp. 6301–6313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Nagl, C. Baleizão, S. M. Borisov, M. Schäferling, M. N. Berberan-Santos, and O. S. Wolfbeis, “Optical sensing and imaging of trace oxygen with record response,” Angewandte Chemie, vol. 46, no. 13, pp. 2317–2319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. G. De Miguel, M. Wielopolski, D. I. Schuster et al., “Triazole bridges as versatile linkers in electron donor-acceptor conjugates,” Journal of the American Chemical Society, vol. 133, no. 33, pp. 13036–13054, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Yu, T. Canteenwala, M. E. El-Khouly et al., “Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S,” Journal of Materials Chemistry, vol. 15, no. 18, pp. 1857–1864, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Y. Chiang, P. A. Padmawar, J. E. Rogers-Haley et al., “Synthesis and characterization of highly photoresponsive fullerenyl dyads with a close chromophore antenna-C60 contact and effective photodynamic potential,” Journal of Materials Chemistry, vol. 20, no. 25, pp. 5280–5293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Guo, W. Wu, H. Guo, and J. Zhao, “Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet-triplet annihilation upconversions,” Journal of Organic Chemistry, vol. 77, no. 8, pp. 3933–3943, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Huang, X. R. Yu, W. H. Wu, and J. Z. Zhao, “Styryl Bodipy-C60 dyads as efficient heavy-atom-free organic triplet photosensitizers,” Organic Letters, vol. 14, pp. 2594–2597, 2012. View at Google Scholar
  56. M. Bröring, R. Krüger, S. Link et al., “Bis(BF2)-2,2′-bidipyrrins (BisBODIPYs): highly fluorescent BODIPY dimers with large stokes shifts,” Chemistry, vol. 14, no. 10, pp. 2976–2983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Cakmak, S. Kolemen, S. Duman et al., “Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action,” Angewandte Chemie, vol. 50, no. 50, pp. 11937–11941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Yao, F. J. Dan, Q. Cao, M. F. Mao, and S. Z. Xiao, “Non-aggregated boron-fluorine derivatives with photodynamic activity,” Applied Organometallic Chemistry, vol. 26, pp. 707–771, 2012. View at Google Scholar