Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 851915, 9 pages
http://dx.doi.org/10.1155/2013/851915
Research Article

The Uptake Mechanism of the Cell-Penetrating pVEC Peptide

Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey

Received 17 December 2012; Revised 8 March 2013; Accepted 10 March 2013

Academic Editor: Yifat Miller

Copyright © 2013 Ihsan Omur Akdag and Elif Ozkirimli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Vanhee, A. M. van der Sloot, E. Verschueren, L. Serrano, F. Rousseau, and J. Schymkowitz, “Computational design of peptide ligands,” Trends in Biotechnology, vol. 29, no. 5, pp. 231–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. E. O. Olmez and B. S. Akbulut, “Protein-peptide interactions revolutionize drug development,” in Binding Protein, K. Abdelmohsen, Ed., chapter 3, InTech, 2012. View at Google Scholar
  3. A. M. Gewirtz, D. L. Sokol, and M. Z. Ratajczak, “Nucleic acid therapeutics: state of the art and future prospects,” Blood, vol. 92, no. 3, pp. 712–736, 1998. View at Google Scholar · View at Scopus
  4. R. L. Juliano, S. Alahari, H. Yoo, R. Kole, and M. Cho, “Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides,” Pharmaceutical Research, vol. 16, no. 4, pp. 494–502, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Arnheiter and O. Haller, “Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins,” EMBO Journal, vol. 7, no. 5, pp. 1315–1320, 1988. View at Google Scholar · View at Scopus
  6. R. Chakrabarti, D. E. Wylie, and S. M. Schuster, “Transfer of monoclonal antibodies into mammalian cells by electroporation,” Journal of Biological Chemistry, vol. 264, no. 26, pp. 15494–15500, 1989. View at Google Scholar · View at Scopus
  7. R. M. Straubinger, N. Duzgunes, and D. Papahadjopoulos, “pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules,” FEBS Letters, vol. 179, no. 1, pp. 148–154, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Varga, T. J. Wickham, and D. A. Lauffenburger, “Receptor-mediated targeting of gene delivery vectors: insights from molecular mechanisms for improved vehicle design,” Biotechnology and Bioengineering, vol. 70, no. 6, pp. 593–605, 2000. View at Google Scholar
  9. B. Gupta, T. S. Levchenko, and V. P. Torchilin, “Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides,” Advanced Drug Delivery Reviews, vol. 57, no. 4, pp. 637–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Magzoub and A. Gräslund, “Cell-penetrating peptides: small from inception to application,” Quarterly Reviews of Biophysics, vol. 37, no. 2, pp. 147–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Heitz, M. C. Morris, and G. Divita, “Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics,” British Journal of Pharmacology, vol. 157, no. 2, pp. 195–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yesylevskyy, S.-J. Marrink, and A. E. Mark, “Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers,” Biophysical Journal, vol. 97, no. 1, pp. 40–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. D. Herce and A. E. Garcia, “Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20805–20810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Madani, S. Lindberg, Ü. Langel, S. Futaki, and A. Graeslund, “Mechanisms of cellular uptake of cell-penetrating peptides,” Journal of Biophysics, vol. 2011, Article ID 414729, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Morris, S. Deshayes, F. Heitz, and G. Divita, “Cell-penetrating peptides: from molecular mechanisms to therapeutics,” Biology of the Cell, vol. 100, no. 4, pp. 201–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Eiríksdóttir, K. Konate, Ü. Langel, G. Divita, and S. Deshayes, “Secondary structure of cell-penetrating peptides controls membrane interaction and insertion,” Biochimica et Biophysica Acta, vol. 1798, no. 6, pp. 1119–1128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Liu, Y. Fang, Q. Huang, and J. Wu, “A rigidity-enhanced antimicrobial activity: a case for linear cationic α-helical peptide HP(2-20) and its four analogues,” PLoS One, vol. 6, no. 1, Article ID e16441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Elmquist, M. Hansen, and Ü. Langel, “Structure-activity relationship study of the cell-penetrating peptide pVEC,” Biochimica et Biophysica Acta, vol. 1758, no. 6, pp. 721–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Izrailev, S. Isralewitz B, D. Kosztin et al., “Steered molecular dynamics,” in Computational Molecular Dynamics: Challenges, Methods, Ideas, P. H. Deuflhard, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel, Eds., pp. 39–65, Springer, Berlin, Germany, 1998. View at Google Scholar
  20. A. C. Lorenzo and P. M. Bisch, “Analyzing different parameters of steered molecular dynamics for small membrane interacting molecules,” Journal of Molecular Graphics and Modelling, vol. 24, no. 1, pp. 59–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Huang, E. Ozkirimli, and C. B. Post, “Comparison of three perturbation molecular dynamics methods for modeling conformational transitions,” Journal of Chemical Theory and Computation, vol. 5, no. 5, pp. 1304–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Izrailev, S. Stepaniants, and K. Schulten, “Applications of steered molecular dynamics to protein-ligand/membrane binding,” Biophysical Journal, vol. 74, no. 2, pp. A177–A177, 1998. View at Google Scholar
  23. M. Ø. Jensen, Y. Yin, E. Tajkhorshid, and K. Schulten, “Sugar transport across lactose permease probed by steered molecular dynamics,” Biophysical Journal, vol. 93, no. 1, pp. 92–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten, “Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation,” Biophysical Journal, vol. 75, no. 2, pp. 662–671, 1998. View at Google Scholar · View at Scopus
  25. O. V. Levtsova, M. Y. Antonov, D. Y. Mordvintsev, Y. N. Utkin, K. V. Shaitan, and M. P. Kirpichnikov, “Steered molecular dynamics simulations of cobra cytotoxin interaction with zwitterionic lipid bilayer: no penetration of loop tips into membranes,” Computational Biology and Chemistry, vol. 33, no. 1, pp. 29–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Babakhani, A. A. Gorfe, J. Gullingsrud, J. E. Kim, and J. A. McCammon, “Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation,” Biopolymers, vol. 85, no. 5-6, pp. 490–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-W. Tsai, N. Y. Hsu, C. H. Wang et al., “Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides,” Journal of Molecular Biology, vol. 392, no. 3, pp. 837–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Elmquist, M. Hansen, and Ü. Langel, “Structure-activity relationship study of the cell-penetrating peptide pVEC,” Biochimica et Biophysica Acta, vol. 1758, no. 6, pp. 721–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Joanne, C. Galanth, N. Goasdoué et al., “Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry,” Biochimica et Biophysica Acta, vol. 1788, no. 9, pp. 1772–1781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Phillips, R. Braun, W. Wang et al., “Scalable molecular dynamics with NAMD,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1781–1802, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. MacKerell, D. Bashford, M. Bellott et al., “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” Journal of Physical Chemistry B, vol. 102, no. 18, pp. 3586–3616, 1998. View at Google Scholar · View at Scopus
  33. S. E. Feller and A. D. MacKerell, “An improved empirical potential energy function for molecular simulations of phospholipids,” Journal of Physical Chemistry B, vol. 104, no. 31, pp. 7510–7515, 2000. View at Google Scholar · View at Scopus
  34. W. L. Jorgensen, “Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water,” Journal of the American Chemical Society, vol. 103, no. 2, pp. 335–340, 1981. View at Google Scholar · View at Scopus
  35. T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 10089–10092, 1993. View at Google Scholar · View at Scopus
  36. G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular dynamics algorithms,” The Journal of Chemical Physics, vol. 101, no. 5, pp. 4177–4189, 1994. View at Google Scholar · View at Scopus
  37. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, “Constant pressure molecular dynamics simulation: the Langevin piston method,” The Journal of Chemical Physics, vol. 103, no. 11, pp. 4613–4621, 1995. View at Google Scholar · View at Scopus
  38. I. Vorobyov, L. Li, and T. W. Allen, “Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane,” Journal of Physical Chemistry B, vol. 112, no. 32, pp. 9588–9602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. D. Herce, A. E. Garcia, J. Litt et al., “Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides,” Biophysical Journal, vol. 97, no. 7, pp. 1917–1925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Harms, J. L. Schlessman, G. R. Sue, and B. Garci'a-Moreno, “Arginine residues at internal positions in a protein are always charged,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 47, pp. 18954–18959, 2011. View at Publisher · View at Google Scholar
  41. J. L. MacCallum, W. F. D. Bennett, and D. P. Tieleman, “Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment,” Journal of General Physiology, vol. 129, no. 5, pp. 371–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. MacCallum, W. F. D. Bennett, and D. P. Tieleman, “Distribution of amino acids in a lipid bilayer from computer simulations,” Biophysical Journal, vol. 94, no. 9, pp. 3393–3404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. L. MacCallum, W. F. Bennett, and D. P. Tieleman, “Transfer of arginine into lipid bilayers is nonadditive,” Biophysical Journal, vol. 101, no. 1, pp. 110–117, 2011. View at Publisher · View at Google Scholar
  44. C. W. Tsai, N. Y. Hsu, C. H. Wang et al., “Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides,” Journal of Molecular Biology, vol. 392, no. 3, pp. 837–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Bryant, V. S. Pande, and D. S. Rokhsar, “Mechanical unfolding of a β-hairpin using molecular dynamics,” Biophysical Journal, vol. 78, no. 2, pp. 584–589, 2000. View at Google Scholar · View at Scopus
  46. C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Review Letters, vol. 78, no. 14, pp. 2690–2693, 1997. View at Google Scholar · View at Scopus
  47. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Bustamante, “Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality,” Science, vol. 296, no. 5574, pp. 1832–1835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Park and K. Schulten, “Calculating potentials of mean force from steered molecular dynamics simulations,” Journal of Chemical Physics, vol. 120, no. 13, pp. 5946–5961, 2004. View at Publisher · View at Google Scholar · View at Scopus