Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 905704, 9 pages
http://dx.doi.org/10.1155/2013/905704
Research Article

High Throughput Quantitative Bioanalytical LC/MS/MS Determination of Gemifloxacin in Human Urine

1Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
2Department of Chemistry, College of Science, King Abdulaziz University, P.O. Box 54881, Jeddah 21589, Saudi Arabia
3Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt

Received 13 September 2013; Accepted 8 November 2013

Academic Editor: Alberto Ritieni

Copyright © 2013 Adnan A. Kadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Y. Lesher, E. J. Froelich, M. D. Gruett, J. H. Bailey, and R. P. Brundage, “1, 8-naphthyridine derivatives. A new class of chemotherapeutic agents,” Journal of medicinal and pharmaceutical chemistry, vol. 91, pp. 1063–1065, 1962. View at Google Scholar · View at Scopus
  2. H. Lopez, D. Stepanik, V. Vilches et al., “Comparative in vitro activity of gemifloxacin against gram-positive and gram-negative clinical isolates in Argentina,” Diagnostic Microbiology and Infectious Disease, vol. 40, no. 4, pp. 187–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Oh, K. Paek, M. Ahn et al., “In vitro and in vivo evaluations of LB20304, a new fluoronaphthyridone,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 6, pp. 1564–1568, 1996. View at Google Scholar · View at Scopus
  4. M. G. Cormican and R. N. Jones, “Antimicrobial activity and spectrum of LB20304, a novel fluoronaphthyridone,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 1, pp. 204–211, 1997. View at Google Scholar · View at Scopus
  5. A. F. Hohl, R. Frei, V. Pünter et al., “International multicenter investigation of LB20304, a new fluoronaphthyridone,” Clinical Microbiology and Infection, vol. 4, no. 5, pp. 280–284, 1998. View at Google Scholar · View at Scopus
  6. T. A. Davies, L. M. Kelly, G. A. Pankuch, K. L. Credito, M. R. Jacobs, and P. C. Appelbaum, “Antipneumococcal activities of gemifloxacin compared to those of nine other agents,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 2, pp. 304–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Davies, L. M. Kelly, D. B. Hoellman et al., “Activities and postantibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 3, pp. 633–639, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dubois and C. St-Pierre, “Comparative in vitro activity and post-antibiotic effect of gemifloxacin against Legionella spp,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 4, pp. 41–46, 2000. View at Google Scholar · View at Scopus
  9. P. M. Roblin, T. Reznik, A. Kutlin, and M. R. Hammerschlag, “In vitro activities of gemifloxacin (SB 265805, LB20304) against recent clinical isolates of Chlamydia pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, pp. 2806–2807, 1999. View at Google Scholar · View at Scopus
  10. P. C. T. Hannan and G. Woodnutt, “In vitro activity of gemifloxacin (SB 265805; LB20304a) against human mycoplasmas,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 3, pp. 367–369, 2000. View at Google Scholar · View at Scopus
  11. J. M. Blondeau and G. S. Tillotson, “Gemifloxacin for the treatment of uncomplicated urinary infections (acute cystitis),” Ginecologia y Obstetricia de Mexico, vol. 77, no. 12, pp. 573–582, 2009. View at Google Scholar · View at Scopus
  12. J. M. Blondeau, “Fluoroquinolones: mechanism of action, classification, and development of resistance,” Survey of Ophthalmology, vol. 49, supplement 2, pp. S73–S78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Oliphant and G. M. Green, “Quinolones: a comprehensive review,” American Family Physician, vol. 65, no. 3, pp. 455–464, 2002. View at Google Scholar · View at Scopus
  14. S. Souverain, S. Rudaz, and J. Veuthey, “Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures,” Journal of Chromatography A, vol. 1058, no. 1-2, pp. 61–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Marchi, S. Rudaz, M. Selman, and J. Veuthey, “Evaluation of the influence of protein precipitation prior to on-line SPE-LC-API/MS procedures using multivariate data analysis,” Journal of Chromatography B, vol. 845, no. 2, pp. 244–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. C. Charan and S. Satyabrata, “Simple and rapid spectrophotometric estimation of gemifloxacin mesylate in bulk and tablet formulations,” International Journal of PharmTech Research, vol. 3, no. 1, pp. 133–135, 2011. View at Google Scholar · View at Scopus
  17. R. R. Das and P. P. Sunita, “Validated UV-spectrophotometric methods for determination of gemifloxacin mesylate in pharmaceutical tablet dosage forms,” Journal of Chemistry, vol. 7, pp. S344–S348, 2010. View at Google Scholar · View at Scopus
  18. M. V. Krishna and D. G. Sankar, “Utility of δ and π-acceptors for the spectrophotometric determination of gemifloxacin mesylate in pharmaceutical formulations,” Journal of Chemistry, vol. 5, no. 3, pp. 493–498, 2008. View at Google Scholar · View at Scopus
  19. M. V. Krishna and D. G. Sankar, “Spectrophotometric determination of gemifloxacin mesylate in pharmaceutical formulations through ion-pair complex formation,” Journal of Chemistry, vol. 5, no. 3, pp. 515–520, 2008. View at Google Scholar · View at Scopus
  20. D. Madhuri, K. B. Chandrasekhar, N. Devanna, and G. Somasekhar, “Direct and derivative spectrophotometric estimation of gemifloxacin by chelation with palladium(II) ion,” Rasayan Journal of Chemistry, vol. 3, no. 1, pp. 159–165, 2010. View at Google Scholar · View at Scopus
  21. C. S. Paim, F. Führ, M. Steppe, and E. E. S. Schapoval, “Gemifloxacin mesylate: UV spectrophotometric method for quantitative determination using experimental design for robustness,” Quimica Nova, vol. 35, no. 1, pp. 193–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sahu, S. K. Patro, U. L. Narayan, and B. Garnaik, “Ion-pair spectrophotometric estimation of gemifloxacin,” Pharmaceutical Methods, vol. 3, pp. 26–30, 2012. View at Google Scholar
  23. S. E. K. Tekkeli and A. Önal, “Spectrofluorimetric methods for the determination of gemifloxacin in tablets and spiked plasma samples,” Journal of Fluorescence, vol. 21, no. 3, pp. 1001–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. A. M. Ebraheem, A. A. Elbashir, and H. Y. Aboul-Enein, “Spectrophotometric methods for the determination of gemifloxacin in pharmaceutical formulations,” Acta Pharmaceutica Sinica B, vol. 1, pp. 248–253, 2011. View at Google Scholar
  25. Q. Xia, Y. Yang, and M. Liu, “Spectrofluorimetric determination of fluoroquinolones in honey with 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone in the presence of β-cyclodextrin,” Journal of Fluorescence, vol. 23, pp. 1–11, 2013. View at Google Scholar
  26. A. A. Elbashir, B. Saad, A. S. M. Ali, K. M. M. Al-Azzam, and H. Y. Aboul-Enein, “Validated stability indicating assay of gemifloxacin and lomefloxacin in tablet formulations by capillary electrophoresis,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 10, pp. 1465–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. N. Rao, C. G. Naidu, K. G. Prasad, R. Padiya, and S. B. Agwane, “Determination of gemifloxacin on dried blood spots by hydrophilic interaction liquid chromatography with fluorescence detector: application to pharmacokinetics in rats,” Biomedical Chromatography, vol. 26, pp. 1534–1542, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Vinodhini, K. Chitras, A. S. S. Annie, I. Marbaniang, A. K. Singh, D. Ashok et al., “Determination of gemifloxacin in tablets by reverse phase high performance liquid chromatography,” Indian Drugs, vol. 46, pp. 71–73, 2009. View at Google Scholar
  29. B. M. H. Al-Hadiya, A. A. Khady, and G. A. E. Mostafa, “Validated liquid chromatographic-fluorescence method for the quantitation of gemifloxacin in human plasma,” Talanta, vol. 83, pp. 110–116, 2010. View at Google Scholar
  30. W. Lee and C. Y. Hong, “Direct liquid chromatographic enantiomer separation of new fluoroquinolones including gemifloxacin,” Journal of Chromatography A, vol. 879, no. 2, pp. 113–118, 2000. View at Google Scholar · View at Scopus
  31. A. Allen, E. Bygate, M. Vousden et al., “Multiple-dose pharmacokinetics and tolerability of gemifloxacin administered orally to healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 2, pp. 540–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. C. S. Paim, F. Fuhr, S. D. Miron et al., “Stability-indicating LC assay and determination of system suitability limits with a robustness test of gemifloxacin mesylate in tablets,” Current Analytical Chemistry, vol. 8, pp. 269–276, 2010. View at Google Scholar
  33. A. R. Rote and S. P. Pingle, “Reverse phase-HPLC and HPTLC methods for determination of gemifloxacin mesylate in human plasma,” Journal of Chromatography B, vol. 877, no. 29, pp. 3719–3723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Sultana, M. S. Arayne, S. Shamim, M. Akhtar, and S. Gul, “Validated method for the determination of gemifloxacin in bulk, pharmaceutical formulations and human serum by RP-HPLC: in vitro applications,” Journal of the Brazilian Chemical Society, vol. 22, no. 5, pp. 987–992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. V. d. Araújo, J. V. Laureano, L. D. Grünspan, T. D. Costa, and L. Tasso, “Validation of an efficient LC-microdialysis method for gemifloxacin quantitation in lung, kidney and liver of rats,” Journal of Chromatography B, vol. 919, pp. 62–66, 2013. View at Google Scholar
  36. M. Gumustas and S. A. Ozkan, “Simple, sensitive and reliable LC-DAD method of gemifloxacin determination in pharmaceutical dosage forms,” Turkish Journal of Pharmaceutical Sciences, vol. 9, pp. 161–170, 2012. View at Google Scholar
  37. U. S. Chakrabarty, A. Das, U. Bhaumik et al., “Rapid and sensitive LC method for the analysis of gemifloxacin in human plasma,” Chromatographia, vol. 69, no. 9-10, pp. 853–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Roy, A. Das, U. Bhaumik et al., “Determination of gemifloxacin in different tissues of rat after oral dosing of gemifloxacin mesylate by LC-MS/MS and its application in drug tissue distribution study,” Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 2, pp. 216–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Doyle, S. E. Fowles, D. F. McDonnell, and S. A. White, “Rapid determination of gemifloxacin in human plasma by high-performance liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 746, no. 2, pp. 191–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. V. R. Robledo and W. F. Smyth, “A study of the analytical behaviour of selected new molecular entities using electrospray ionisation ion trap mass spectrometry, liquid chromatography, gas chromatography and polarography and their determination in serum at therapeutic concentrations,” Analytica Chimica Acta, vol. 623, no. 2, pp. 221–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Lee, T. E. Peart, and M. L. Svoboda, “Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry,” Journal of Chromatography A, vol. 1139, no. 1, pp. 45–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. I. Cho, J. Shim, M. Kim, Y. Kim, and D. S. Chung, “On-line sample cleanup and chiral separation of gemifloxacin in a urinary solution using chiral crown ether as a chiral selector in microchip electrophoresis,” Journal of Chromatography A, vol. 1055, no. 1-2, pp. 241–245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Zhao, W. Zhao, and W. Xiong, “Chemiluminescence determination of gemifloxacin based on diperiodatoargentate (III)-sulphuric acid reaction in a micellar medium,” Luminescence, vol. 28, pp. 108–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. A. M. Al-Mohaimeed, S. A. Al-Tamimi, N. A. Alarfaj, and F. A. Aly, “New coated wire sensors for potentiometric determination of gemifloxacin in pure form, pharmaceutical formulations and biological fluids,” International Journal of Electrochemical Science, vol. 7, pp. 12518–12530, 2012. View at Google Scholar
  45. ICH Guidance for Industry, QR1 Validation of Analytical Procedures: Methodology, ICH, Geneva, Switzerland, 1996.
  46. C. Jiménez, R. Ventura, and J. Segura, “Validation of qualitative chromatographic methods: strategy in antidoping control laboratories,” Journal of Chromatography B, vol. 767, no. 2, pp. 341–351, 2002. View at Publisher · View at Google Scholar · View at Scopus