Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 931051, 6 pages
http://dx.doi.org/10.1155/2013/931051
Research Article

A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Received 28 July 2013; Accepted 17 September 2013

Academic Editor: Ronen Zangi

Copyright © 2013 Roghayeh Abedi Karjiban et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Weissmann and R. Clairborne, Cell Membranes: Biochemistry, Cell Biology and Pathology, H. P. Publishing, New York, NY, USA, 1975.
  2. R. A. Walker, J. C. Conboy, and G. L. Richmond, “Molecular structure and ordering of phospholipids at a liquid-liquid interface,” Langmuir, vol. 13, no. 12, pp. 3070–3072, 1997. View at Google Scholar · View at Scopus
  3. M. A. Malik, M. A. Hashim, F. Nabi, S. A. AL-Thabaiti, and Z. Khan, “Anti-corrosion ability of surfactants: a review,” International Journal of Electrochemical Science, vol. 6, no. 6, pp. 1927–1948, 2011. View at Google Scholar · View at Scopus
  4. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press:, London, UK, 2nd edition, 1992.
  5. V. Devarajan and V. Ravichandran, “Nanoemulsions: as modified drug delivery tool,” International Journal of Comprehensive Pharmacy, vol. 2, no. 04, 2011. View at Google Scholar
  6. S. Zainol, M. Basri, H. Basri et al., “Formulation optimization of palm-based nanoemulsion system containing Levodopa,” International Journal of Molecular Sciences, vol. 13, no. 10, pp. 13049–13064, 2012. View at Google Scholar
  7. R. A. Karjiban, M. Basri, M. B. Abdul Rahman, and A. B. Salleh, “Molecular dynamics simulation of palmitate ester self-assembly with diclofenac,” Internatinal Journal of Molecular Sciences, vol. 13, no. 8, pp. 9572–9583, 2012. View at Google Scholar
  8. A. V. Frolov, A. V. Shnyrova, and J. Zimmerberg, “Lipid polymorphisms and membrane shape,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 11, Article ID 004747, 2011. View at Google Scholar
  9. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The MARTINI force field: coarse grained model for biomolecular simulations,” Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7812–7824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and M. L. Klein, “A coarse grain model for phospholipid simulations,” Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4464–4470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Marrink, A. H. de Vries, and A. E. Mark, “Coarse grained model for semiquantitative lipid simulations,” Journal of Physical Chemistry B, vol. 108, no. 2, pp. 750–760, 2004. View at Google Scholar · View at Scopus
  12. R. Faller and S.-J. Marrink, “Simulation of domain formation in DLPC-DSPC mixed bilayers,” Langmuir, vol. 20, no. 18, pp. 7686–7693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Marrink, J. Risselada, and A. E. Mark, “Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model,” Chemistry and Physics of Lipids, vol. 135, no. 2, pp. 223–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis,” Journal of Molecular Modeling, vol. 7, no. 8, pp. 306–317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984. View at Google Scholar · View at Scopus
  16. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK, 1989.
  17. N. Kučerka, Y. Liu, N. Chu, H. I. Petrache, S. Tristram-Nagle, and J. F. Nagle, “Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using x-ray scattering from oriented multilamellar arrays and from unilamellar vesicles,” Biophysical Journal, vol. 88, no. 4, pp. 2626–2637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kučerka, J. F. Nagle, J. N. Sachs et al., “Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data,” Biophysical Journal, vol. 95, no. 5, pp. 2356–2367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley and Sons, New York, NY, USA, 1980.
  21. O. Edholm and J. F. Nagle, “Areas of molecules in membranes consisting of mixtures,” Biophysical Journal, vol. 89, no. 3, pp. 1827–1832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Orsi and J. W. Essex, “Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: insights from coarse-grain molecular dynamics simulations,” Faraday Discussions, vol. 161, pp. 249–272, 2013. View at Google Scholar
  23. H. I. Petrache, S. W. Dodd, and M. F. Brown, “Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy,” Biophysical Journal, vol. 79, no. 6, pp. 3172–3192, 2000. View at Google Scholar · View at Scopus
  24. N. Kučerka, M.-P. Nieh, and J. Katsaras, “Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature,” Biochimica et Biophysica Acta, vol. 1808, no. 11, pp. 2761–2771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Waheed and O. Edholm, “Undulation contributions to the area compressibility in lipid bilayer simulations,” Biophysical Journal, vol. 97, no. 10, pp. 2754–2760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. G. Lee, “How lipids affect the activities of integral membrane proteins,” Biochimica et Biophysica Acta, vol. 1666, no. 1-2, pp. 62–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. J. McIntosh and S. A. Simon, “Hydration force and bilayer deformation: a reevaluation,” Biochemistry, vol. 25, no. 14, pp. 4058–4066, 1986. View at Google Scholar · View at Scopus
  28. N. Kučerka, M. A. Kiselev, and P. Balgavý, “Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods,” European Biophysics Journal, vol. 33, no. 4, pp. 328–334, 2004. View at Google Scholar · View at Scopus
  29. C. Hofsäß, E. Lindahl, and O. Edholm, “Molecular dynamics simulations of phospholipid bilayers with cholesterol,” Biophysical Journal, vol. 84, no. 4, pp. 2192–2206, 2003. View at Google Scholar · View at Scopus