Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 938237, 8 pages
http://dx.doi.org/10.1155/2013/938237
Research Article

Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

1College of Petroleum Engineering, China University of Petroleum, Qingdao 266555, China
2Zhuangxi Oil Production Plant, Shengli Oilfield, Sinopec, Dongying 257237, China
3Xinchun Production Plant, Shengli Oilfield, Sinopec, China

Received 21 March 2013; Accepted 25 June 2013

Academic Editor: Ibnelwaleed Ali Hussien

Copyright © 2013 Yong Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Johnson Jr., “Status of caustic and emulsion methods,” Journal of Petroleum Technology, vol. 28, pp. 85–92, 1976. View at Google Scholar · View at Scopus
  2. H. Y. Jennings Jr., C. E. Johnson Jr., and C. D. McAuliffe, “Caustic waterflooding process for heavy oilscaustic waterflooding process for heavy oils,” Journal of Petroleum Technology, vol. 26, pp. 1344–1352, 1974. View at Google Scholar · View at Scopus
  3. C. E. Cooke Jr., R. E. Williams, and P. A. Kolodzie, “Oil recovery by alkaline waterflooding,” Journal of Petroleum Technology, vol. 26, pp. 1365–1374, 1974. View at Google Scholar · View at Scopus
  4. M. Dong, Q. Liu, and A. Li, “Micromodel study of the displacement mechanisms of enhanced heavy oil recovery by alkaline flooding,” in Proceedings of the International Symposium of the Society of Core Analysts, pp. 2007–2047, Calgary; SCA, Alberta, Canada, September 2007.
  5. J. Bryan and A. Kantzas, “Enhanced heavy-oil recovery by alkali-surfactant flooding,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '07), pp. 3642–3654, Anaheim, Calif, USA, November 2007. View at Scopus
  6. B. Ding, G. Zhang, J. Ge, and X. Liu, “Research on mechanisms of alkaline flooding for heavy oil,” Energy and Fuels, vol. 24, no. 12, pp. 6346–6352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Arhuoma, D. Yang, M. Dong, and R. Idem, “Numerical simulation of displacement mechanisms for enhancing heavy oil recovery during alkaline flooding,” in Proceedings of the Canadian International Petroleum Conference (CIPC '09), pp. 2009–2053, Calgary; SPE, Alberta, Canada, June 2009.
  8. M. S. Almalik, A. M. Attia, and L. K. Jang, “Effects of alkaline flooding on the recovery of Safaniya crude oil of Saudi Arabia,” Journal of Petroleum Science and Engineering, vol. 17, no. 3-4, pp. 367–372, 1997. View at Google Scholar · View at Scopus
  9. C. I. Chiwetelu, G. H. Neale, V. Hornof, and A. E. George, “Recovery of a saskatchewan heavy oil using alkaline solution,” Journal of Canadian Petroleum Technology, vol. 33, no. 4, pp. 37–42, 1994. View at Google Scholar
  10. E. M. Trujillo, “Static and dynamic interfacial tensions between crude oils and caustic solutions,” Society of Petroleum Engineers Journal, vol. 23, no. 4, pp. 645–656, 1983. View at Google Scholar · View at Scopus
  11. H. Pei, G. Zhang, J. Ge, L. Jin, and X. Liu, “Analysis of microscopic displacement mechanisms of alkaline flooding for enhanced heavy-oil recovery,” Energy and Fuels, vol. 25, no. 10, pp. 4423–4429, 2011. View at Publisher · View at Google Scholar · View at Scopus