Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 951529, 7 pages
http://dx.doi.org/10.1155/2013/951529
Research Article

Synthesis and Electrical and Gas Sensing Properties of Some 5-(Quinolinylmethylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione and 5-(Quinolinylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione Derivatives

1Department of Chemistry, Faculty of Science and Art, Davutpasa Campus, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
2Institute of Science and Technology, Yildiz Central Campus, Yildiz Technical University, Barbaros Bulvari, Besiktas, 34349 Istanbul, Turkey
3Department of Physics, Faculty of Science and Art, Davutpasa Campus, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey

Received 5 June 2012; Accepted 29 August 2012

Academic Editor: Hakan Arslan

Copyright © 2013 H. Kerim Beker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. K. Akopyan, A. S. Adzhibekyan, G. A. Porkinyan, and E. A. Tumasyan, Bilzh. Arm., 29, 80, Chemical Abstracts, 85, 72068, 1976.
  2. S. Senda, H. Fugimura, and H. Izumi, Japan Patent, 193, 6824, Chemical Abstracts, 70, 78001, 1969.
  3. S. L. Katz and A. W. Gay, US Patent, 352, 806, Chemical Abstracts, 98, 215603, 1983.
  4. W. G. Brouwer, E. E. Felauerand, and A. R. Bell, US Patent, 779, 982, Chemical Abstracts, 114, 185539, 1991.
  5. A. Esanu, BE Patent, 902, 232, Chemical Abstracts, 104, 130223, 1986.
  6. M. Maitre, V. Hechler, P. Vayer et al., “A specific γ-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties,” Journal of Pharmacology and Experimental Therapeutics, vol. 255, no. 2, pp. 657–663, 1990. View at Google Scholar · View at Scopus
  7. H. Salgado Zamora, B. Rizo, E. Campos, R. Jiménez, and A. Reyes, “A convenient synthesis of novel pyrido(1′,2′: 1,2)imidazo[5,4-d]-1,2,3-triazinones from Imidazo[1,2-a]pyridines,” Journal of Heterocyclic Chemistry, vol. 41, no. 1, pp. 91–94, 2004. View at Google Scholar · View at Scopus
  8. T. Ceyhan, A. Altındal, M. K. Erbil, and Ö. Bekaroğlu, “Synthesis, characterization, conduction and gas sensing properties of novel multinuclear metallo phthalocyanines (Zn, Co) with alkylthio substituents,” Polyhedron, vol. 25, pp. 737–746, 2006. View at Google Scholar
  9. M. Özer, A. Altındal, A. R. Özkaya, M. Bulut, and Ö. Bekaroğlu, “Synthesis, characterization, and electrical, electrochemical and gas sensing properties of a novel cyclic borazine derivative containing three phthalocyaninato zinc(II) macrocycles,” Synthetic Metals, vol. 155, pp. 222–231, 2005. View at Publisher · View at Google Scholar
  10. A. K. M. Shafiqul Islam, Z. Ismail, M. N. Ahmad et al., “Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs),” Sensors and Actuators B, vol. 109, no. 2, pp. 238–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X. C. Zhou, L. Zhong, S. F. Y. Li, S. C. Ng, and H. S. O. Chan, “Organic vapour sensors based on quartz crystal microbalance coated with self-assembled monolayers,” Sensors and Actuators B, vol. 42, no. 1, pp. 59–65, 1997. View at Google Scholar · View at Scopus
  12. F. L. Dickert, A. Haunschild, and V. Maune, “Tetraazacyclophanes as host molecules for solvent vapours: mass-sensitive detection and force-field calculations,” Sensors and Actuators B, vol. 12, no. 3, pp. 169–173, 1993. View at Google Scholar · View at Scopus
  13. Z. Z. Öztürk, R. Zhou, V. Ahsen, Ö. Bekaroğlu, and W. Göpel, “Molecular recognition with metal containing supramolecular compounds: soluble tetradentate dithioglyoximes for the detection of organic solvents in the gas phase,” Sensors and Actuators B, vol. 36, no. 1–3, pp. 404–408, 1996. View at Google Scholar · View at Scopus
  14. B. S. Jursic, “A simple method for knoevenagel condensation of α,β-conjugated and aromatic aldehydes with barbituric acid,” Journal of Heterocyclic Chemistry, vol. 38, no. 3, pp. 655–657, 2001. View at Google Scholar · View at Scopus
  15. B. S. Jursic and E. D. Stevens, “Preparation of dibarbiturates of oxindole by condensation of isatin and barbituric acid derivatives,” Tetrahedron Letters, vol. 43, no. 32, pp. 5681–5683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. S. Furnis, A. J. Hannaford, P. W. G. Smith, and A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, Longman, London, UK, 5th edition, 1996.
  17. H. Kaplan, “The use of selenium dioxide in the preparation of quinoline aldehydes,” Journal of the American Chemical Society, vol. 63, no. 10, pp. 2654–2655, 1941. View at Google Scholar · View at Scopus
  18. C. E. Kwartler and H. G. Lindwall, “Condensation reactions of quinoline aldehydes,” Journal of the American Chemical Society, vol. 59, no. 3, pp. 524–526, 1937. View at Google Scholar · View at Scopus
  19. A. H. Blatt, Organic Syntheses, Longman, London, UK, 1986.