Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015, Article ID 297686, 10 pages
http://dx.doi.org/10.1155/2015/297686
Research Article

Harmful Chemicals in Soil and Risk Assessment of an Abandoned Open Dumpsite in Eastern China

Institute of Ecology and Soil Remediation, Shandong Academy of Environmental Science, Jinan 250013, China

Received 20 August 2014; Accepted 11 September 2014

Academic Editor: Jian Lu

Copyright © 2015 Ying Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The concentrations of pollutants in soil samples collected in and around a dumpsite in Heze, Shandong, China, were investigated, and the potential ecological and health risks of these pollutants were assessed. Seventeen soil samples from five different locations were analysed for pollution characteristics, and the target pollutants included inorganic pollutants and heavy metals as well as volatile organic compounds/semivolatile organic compounds (VOCs/SVOCs). Results showed that the mean concentration level of each pollutant from the interior area was relatively higher than that from the boundary area of the dumpsite. Inorganic pollutants and heavy metals were detected in all of the soil samples. According to potential ecological risk assessment with environmental background values of Shandong as screening values, heavy metals in majority of the samples pose low ecological risk to the ecosystem except Hg. Hg poses a considerable or very high risk because of its high levels of accumulation. In consideration of future land use pattern, human health risks derived from environmental exposure to heavy metals were assessed. Carcinogenic risk and noncarcinogenic hazards for adults are acceptable, while noncarcinogenic hazards for children exceed the safety threshold. The health risks are primarily attributed to oral exposure to As and Cr.