Research Article  Open Access
Design of PdBased Bimetallic Catalysts for ORR: A DFT Calculation Study
Abstract
Developing Pdlean catalysts for oxygen reduction reaction (ORR) is the key for largescale application of proton exchange membrane fuel cells (PEMFCs). In the present paper, we have proposed a multipledescriptor strategy for designing efficient and durable ORR Pdbased alloy catalysts. We demonstrated that an ideal Pdbased bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of PdM alloys, PdV, PdFe, PdZn, PdNb, and PdTa, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for PdM alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding PdM alloys.
1. Introduction
Fuel cells have received much attention in recent years as the global effort to reduce our reliance on fossil fuels has increased. In particular, lowtemperature proton exchange membrane fuel cells (PEMFCs) possess great potential as substitutes for conventional combustion engines in future mobile applications, which can efficiently convert chemical energy into electrical energy. However, the development of PEMFCs is severely hampered by the fact that the oxygen reduction reaction (ORR) is slow, even when using Pt as a catalyst. The sluggish kinetics of the ORR requires a substantial amount of this precious metal within their cathodes in real electrochemical systems, which has limited the scalingup of corresponding renewable energy technologies. Therefore, the PEMFCs still leave room for reducing cost and improving efficiency that could be achieved by finding more active and stable electrocatalytic cathode catalysts for ORR. Because Pt is expensive and scarce, alloys have attracted interest in the request to develop advanced electrocatalysts in recent years [1–4]. Several Pt alloys, such as PtFe, PtCo, PtNi, and PtCu [5–14], are considerably more active than Pt and have been studied extensively toward advanced ORR electrocatalysts. For example, Stamenkovic et al. found that on Pt_{3}Ni the ORR is 90 times faster than on pure Pt [8]. Alloying Pt with nonnoble transition metals, Fe, Co, and Cu, can increase the catalytic activity and the stability of these catalysts, where their Ptbased alloy catalysts have been reported to be 2–10 times more active than polycrystalline Pt for the ORR [6, 9, 13, 15–22]. However, one of the major drawbacks of PEMFCs commercialization is the high cost of Ptbased catalysts. Thus, alternative costeffective catalysts must be developed to eliminate the Ptbased ones. Recent studies on ORR electrocatalysis have attempted to replace Pt with lessexpensive materials.
In recent years, some PdM (M is transition metals) alloys have been used as ORR electrocatalysts [23–30], in which alloying with Fe and Co was found to increase strongly the ORR electrocatalytic activity of Pd. This represents significant progress in the research on nonPt ORR catalysts for PEMFCs. For example, Adzic [28, 29] studied PdM alloy electrocatalysts and found that PdFe and PdCo alloys become very active for ORR, and Pd atoms segregate to the surface to form a pure Pd skin on bulk alloys. The results showed that the active ORR electrocatalysts can be devised without Pt, and their activity can surpass those of pure Pt electrocatalysts [29]. Further enhancement of the ORR catalytic activity and stability of Pd is of considerable interest, and replacing Pt with the lessexpensive metal Pd alloy can considerably decrease the operational costs, thereby facilitating the faster and broader application of PEMFCs. In the search for improved alloy catalyst materials, different strategies and schemes have been used, from experimental highthroughput catalyst screen [31] to the study of idealized model systems [8]. But to date only limited efforts have been made to use computational techniques based on density functional theory (DFT) to screen for improved ORR catalysts [32]. The pace of materials discovery for alloy electrocatalysts could be accelerated in principle by the development of efficient computational screening methods. Some studies have proposed thermodynamic guidelines for design of Pdbased alloy electrocatalysts for ORR. For example, Bard et al. [30, 33, 34] suggested that, for PdM alloys, the site for O–O bond breaking is constituted by the transition metal M and then formed migrates to hollow sites formed by Pd atoms, where it is easily reduced to water. Based on this mechanism, the alloy surface should compose of a relatively reactive metal such as Co, and the atomic ratio of this transition metal should be 10% to 20% so that sufficient sites exist for reactions of O–O bond breaking on M and for reduction at hollow sites dominated by Pd atoms. Wang and Balbuena [35, 36] proposed a similar thermodynamic guideline for design of Pdbased bimetallic alloy catalysts. For Pd with fully occupied valence dorbitals, alloying with transition metals such as Co with unoccupied valence dorbitals significantly reduces the Gibbs free energy both for the first chargetransfer step and for the steps involving the reduction of intermediates. Although these studies have convincingly showed that firstprinciples catalyst design is now a reality for the ORR and corresponding progress has been made in this respect, these arguments for ORR electrocatalysis on Pdbased bimetallic surfaces cannot explain the relatively good activity and stability of PdM alloys in acidic medium [37]. On the other hand, the Pdenriched skin can account for both the good activity and stability of these alloys [38–40]. Hence, a fully DFTbased, highthroughput, computational design and screening of Pdbased alloy catalysts has yet to be realized, and further development of screening schemes is still necessary for design of Pdbased bimetallic catalysts.
As we all know, the ORR occurs in electrochemical environments under conditions of high electrode potential and is, thus, expected to be susceptible to the stability issues mentioned above. Indeed, recent reports have highlighted the importance of stability considerations in the identification of improved ORR catalysts [8, 41]. Pd materials are known to be kinetically stable in electrochemical systems over relatively long periods of operation [42, 43]. It is also one of the metallic elements that are stable under the high potentials and acidic conditions of a PEMFC [44]. Additionally, coreshell particles that possess an inexpensive core surrounded by a Pd shell are extensively discussed as promising PEMFC catalyst materials and can account for both the good activity and the stability of Pdbased alloys at present. However, the stability issues have almost been not considered in previous computational design and screen of alloy catalysts based on DFT. Therefore, in the present paper we will focus our attention on Pdbased alloy catalysts that could form a protective Pd shell on the topmost surface layer and that possess a high tendency to segregate, a property closely dependent on the surface segregation energy.
As electrocatalytic reactions on catalysts are far too complex for a complete theoretical description, the complexity is first reduced. Consequently, in the present study, we restrict our calculations to close packed surfaces and, in this contribution, we search for a DFTbased, computational catalyst screening procedure including the adsorption energy of O atom, the alloy formation energy, and the surface segregation energy of Pd that are considered sufficiently able to predict the catalytic activity and stability of alloy catalysts. The overall goal is to find alloys of the composition Pd_{3}M (M is transition metals) with improved ORR activity and stability. We illustrate the use of this scheme on the ORR and successfully use these strategies to identify several promising new catalysts for this reaction, and some alloy catalysts have been synthesized and tested experimentally and show improved ORR performance compared with pure Pt. Although our results were not always quantitatively accurate, the conclusions on trends were reasonably accurate qualitatively because the present experimental phenomenon of the ORR confirmed the computational screening results.
2. Models and Methods
Calculations were carried out based on the periodic DFT slab approach by using the generalized gradient approximation with the PerdewBurkeErnzerhof exchange correlation functional [45]. The nuclei and core electrons were described by using PAW potentials [46]. The KohnSham equations were solved selfconsistently by using a planewave basis set. A kinetic energy cutoff of 26 Ry and a chargedensity cutoff of 260 Ry were used to make the planewave basis set finite. The Fermi surface has been treated by the smearing technique of MethfesselPaxton with a parameter of 0.02 Ry [47]. All calculations in this study have been implemented by using the PWSCF codes included in the Quantum ESPRESSO distribution [48], while figures of the chemical structures were produced with the XCRYSDEN graphical package [49–51].
Crystal structure of Pdbased alloys is calculated with L1_{2} cubic system structure in which the stoichiometric ratio is 3 : 1 [52], in which the Pd atoms occupy the facecentered positions and the M (M is 3d, 4d, and 5d transition metals) atoms are located at the corners in the unit cell. For each Pd_{3}M structure, the lattice constant was obtained after a bulk optimization. In all calculations, the (2 × 2) fivelayer fcc(111) slabs with theoretical equilibrium lattice constant to model the Pd_{3}M(111) surface were used. In the super cell, each slab layer contains 3 Pd atoms and 1 M atom.
The segregation structures were reached by exchanging M atoms at the first layer and Pd atoms at the second layer. Therefore, the topmost layer is fully covered by Pd atoms and the second layer contains 50% Pd atoms for each Pd segregation structure. A (4 × 4) uniformly shifted kmesh was used to describe the first Brillouinzone for (2 × 2) slab. Vacuum layers 16 Ǻ in thickness were added above the top layer of slabs in all cases, which is sufficiently large to ensure that the interactions between repeated slabs are negligible. In the slab calculations, the structure of the bottom two layers of the slab was fixed at the theoretical bulk positions, whereas the geometry of the top three layers and all other structural parameters on a (2 × 2) fivelayer slab was allowed to fully relax to minimize the total energy of the system. The criteria for the total energy and the Cartesian force components acting on each atom convergence used were within 10^{−5} Ry and below 10^{−3} Ry/Bohr with regard to structural optimization, respectively.
The band center of surface atoms, , is a key parameter that influence surface adsorption characteristics [53, 54]. Therefore, was calculated in various catalytic materials, and the relationship between the values of and the adsorption energy of O atom was examined. The band center was calculated as the first moment of the projected band density of states on the surface atoms referenced to the Fermi level.
3. Design Schemes for Alloy Catalysts of ORR
3.1. Stability Descriptor of PdBased Bimetallic Catalysts
It could be imagined that formation of Pdbased bimetallic catalysts with Pd surface segregated structure can be divided into two stages. Primarily, bulk alloys must be formed by the liquid phase or solid phase reactions between Pd and transition metals M. Thus, the fact that formation energies, , of the alloys of reaction nPd + mMPd_{n}M_{m} are negative is required. Otherwise, separate phase is formed between Pd and transition metals M. is calculated by the formula , where is the total energy of the alloy, and are the total energy of constituents and under equilibrium lattice constant, respectively. Then, there is surface segregation of interior Pd atoms to form Pd segregated surface via some special processes such as high temperature annealing or surface inducing adsorption. In general, the surface segregation energy, , is the energy of moving an atom from the interior to the surface of a crystal. In this work, it is defined as the difference of total free energies between the slabs with the Pd surface segregated structure and that with the bulk structure. Negative surface segregation energy indicates that the interior Pd atoms are able to segregate to the surface, while positive segregation energy suggests that no Pd segregation occurs on the surface. Although the structure of Pd segregated surface can be achieved by depositing Pd on transition metals or dealloying of Pdbased alloy catalysts, this do not influence the fact that surface segregation energy is a negative act as stability descriptor of alloy catalysts with Pd segregated surface.
3.2. Activity Descriptor of PdBased Bimetallic Catalysts
In our previous study on ORR mechanisms [55], the results indicated that the protonation of adsorbed O atom to form OH is the ratedetermining step (rds) on the Pd(111) surface; such finding about the rds of ORR indicates that the ORR activity of the Pd segregated surface can be assessed by their binding ability to oxygenated species and Pdbased catalysts that more weakly bind atomic oxygen than pure Pt may have better ORR activity. It has been wellestablished in the literature that Pd and Pt are somewhat too oxophilic so that the surface oxygenated species formed from dissociation of O_{2} tend to block the surface sites for ORR [56]. Thus, oxygen adsorption energy can be a good descriptor for the ORR catalytic activity of Pdbased bimetallic alloys. If the adsorption energy of O atom on stable alloy catalysts with Pd segregated surface is close to or slightly weaker than that of pure Pt, the alloy catalysts should have enhanced ORR performance compared with pure Pt. The adsorption energies are calculated with the energies of the bare Pd_{3}M(111) slab () with Pd segregated surface and the isolated oxygen atom as the references according towhere refers to the total energies of the optimized slab/O system.
To sum up, three criteria should be met simultaneously for ideal Pdbased ORR alloy catalysts: (1) < 0; (2) < 0; (3) . Therefore, we applied DFT method to calculate above mentioned three criteria for alloy catalysts based on Pd_{3}M model and then expect that possible ORR catalysts with high activity and stability could be revealed theoretically.
4. Results and Discussion
According to the sequence of periodic table of elements, the DFTcalculated lattice constants () and the values for three criteria of various Pd_{3}M alloys are shown in Tables 1, 2, and 3 when M is 3d, 4d, and 5d transition metals, respectively. Valence electron configuration (VEC) of transition metals M is also given.



4.1. Stability Analysis of PdBased Bimetallic Catalysts
According to the formation energies of Pd_{3}M alloys in Tables 1, 2, and 3, it can be predicted that 3d transition metals Sc, Ti, V, Cr, Mn, Fe, Cu, and Zn, 4d transition metals Nb, Mo, Ru, and Rh, and 5d transition metals Ta, W, Re, Ir, and Pt can form stable alloys with Pd since the formation energy of these Pdbased bimetallic alloys is negative.
To ascertain the effect of electronic structure on stability of Pdbased alloys, the variation trend of the DFTcalculated of Pd_{3}M (M is 3d, 4d, and 5d transition metals) alloys with the valence electrons number (sums of outmost s and d electrons) of M is shown in Figure 1. The results show that the values of become more and more positive firstly and then become more and more negative as valence electrons number increases. There are the most positive in Pd_{3}Co (valence electrons number of Co is 9), Pd_{3}Ru (valence electrons number of Ru is 8), and Pd_{3}Re site (valence electrons number of Re is 7) for the alloys that formed by Pd and 3d, 4d, and 5d transition metals, respectively, which are approximately in the center of periodic table of elements. Therefore, the fact that whether they can form stable alloys between Pd and transition metals is related to valence electrons number of transition metals. This should be due to values that can be affected by the electronic interaction between Pd and transition metals M. For metals which have very different valence electrons numbers from that of Pd, the electronic interaction should be strong due to the large difference in electronegativity. This may be the origin of the largely negative for alloys of Pd with transition metals M.
Relation between the DFTcalculated segregation energy, , of Pd in Pd_{3}M alloys and the valence electrons number of M is shown in Figure 2. For 3d transition metals, the in Pd_{3}M alloys exhibit an oscillating variation with increasing the valence electrons number as moving from the left to right in the periodical table. The for 4d and 5d metals show first decrease then increase with increasing valence electrons number. There are the most negative in Pd_{3}V and Pd_{3}Co (valence electrons number of V and Co is 5 and 9, resp.), Pd_{3}Mo (valence electrons number of Mo is 6), and Pd_{3}Re site (valence electrons number of Re is 7) when alloying Pd with 3d, 4d, and 5d transition metals, respectively, which are also approximately in the center of periodic table of elements. This should be also due to values that can be affected by the electronic interaction between Pd and M. For metals which have very different valence electrons numbers from that of Pd, the electronic interaction should be strong due to the large difference in electronegativity [57]. This may be also the origin of the largely negative for alloys of Pd with transition metals. Thus, we may conclude that electronic interactions play the important role in determining the alloy formation energy and segregation energy of Pd of Pdbased bimetallic alloys for ORR.
According to the criteria of < 0, PdV, PdFe, PdCo, PdNi, PdZn, PdNb, PdMo, PdRu, PdRh, PdTa, PdW, PdRe, PdIr, and PdPt alloys are possible to form Pd segregated surface by surface segregation of Pd. It has been widely reported experimentally and theoretically that surface segregation is primarily determined by the surface energy and the atomic size [58, 59]. Metal atoms with larger radii and lower surface energies usually tend to segregate to the surface. The correlation between and both the M metallic radius [60] and the experimental surface energy [61] can be found in Figures 3 and 4, respectively. One can find that no matter when 3d, 4d, or 5d metals are the alloying elements, Pd is predicted to segregate to the surface for those metals with higher than Pd except for the Ti and Cr. This demonstrates that Pd surface segregation can be mainly determined by the surface energy. M with more positive than Pd does not always correspond to a negative in the corresponding Pd_{3}M alloy since values of are also affected by atomic radius, such as Ti and Cr, which have atomic radii close to and lower than that of Pd, respectively. As far as we know, segregating Pd atom to the surface alleviates the large strain in the alloy and thus decreases the total energy. This leads to the conclusion that the atomic size may be also an important factor for surface segregation. It can be found that Pd tends to segregate to the surface for those metals with atomic radii smaller than Pd except for Mn and Cr. In some cases, it can even determine the direction of surface segregation. For example, PdTi, PdCu, and PdZn alloys, in which Ti possesses a much slight larger atomic radius than Pd, are still predicted to have positive segregation energy of Pd although its slightly higher surface energies than Pd, Cu, and Zn possess much smaller atomic radii than Pd and are still predicted to have a slight trend of Pd surface segregation, in spite of their very low relative to that of Pd. As mentioned above, metal Cr alloy has higher surface energy and lower atomic radius than Pd. However, Pd_{3}Cr alloy has positive segregation energy of Pd, indicating that electronic interaction may play the major role in determining the segregation energy of Pd in Pd_{3}Cr alloy. For other metals M, such as 3d transition metal, Sc, 4d transition metals, Y, Zr, Ag, and Cd, 5d transition metal, Au, which have larger atomic radii and lower surface energy than Pd, alloys of Pd_{3}Sc, Pd_{3}Y, Pd_{3}Zr, Pd_{3}Ag, Pd_{3}Cd, and Pd_{3}Au exhibit considerably positive segregation energy . Thus, it will be difficult for Pd_{3}Sc, Pd_{3}Y, Pd_{3}Zr, Pd_{3}Ag, Pd_{3}Cd, and Pd_{3}Au alloys to form Pd surface segregated structure. The segregation energy of Pd in Pd_{3}Mn alloy is positive and mainly determined by its surface energy because 3d transition metal Mn has smaller atomic radius and lower surface energy than Pd. Since 4d transition metal, Mo, and 5d transition metals W, Re, Ir, and Pt mostly have similar atomic radii to Pd, values of segregation energy for the Pd_{3}Mo, Pd_{3}W, Pd_{3}Re, Pd_{3}Ir, and Pd_{3}Pt alloys are mainly determined by their surface energy. W and Re especially have much more positive surface energy than Pd. Therefore, both of those alloys exhibit considerably negative segregation energy .
To form a stable Pd surface segregated structure in PdM bimetallic alloys, it is necessary that both corresponding and are negative. Otherwise, separate phase may tend to be formed between Pd and transition metals M. As shown in Figure 5, alloys of Pd with 3d transition metals V, Fe, and Zn simultaneously have negative and . Alloys of Pd with early 4d transition metals have negative but positive , while those with late 4d transition metals have negative but positive . Only middle 4d transition metals such as Nb and Mo can form stable alloys with Pd, which simultaneously have negative and . Thus, they should be able to form stable Pd surface segregated. Among Pd5d alloys, PdTa and PdW alloys simultaneously have negative and . Thus, it is expected that Pd, Ta, and W could form stable alloys with Pd surface segregated structure.
The segregation process of Pd was also simulated in systems containing atomic oxygen adsorbed in the fcc (without transition metal atoms) and hcp (with a transition metal atom on the no Pdsegregated surface) positions, respectively. The most stable adsorption site for atomic oxygen is fcc on the Pdsegregated surface, and the differences of adsorption energy between fcc and hcp sites are relatively small. However, on no Pdsegregated surfaces, the differences of adsorption energy are large between both sites. Therefore, it is important to include the hcp case in the evaluation of surface segregation of Pd. The DFTcalculated surface segregation energies of Pd, , for various Pd_{3}M (M is 3d, 4d, and 5d transition metals) alloys in systems containing atomic oxygen adsorbed in the fcc and hcp positions are given in Table 4. The results showed that the segregation energies of Pd change when atomic oxygen adsorbs in fcc site, but the segregation trend of Pd is almost not changed compared to the clean surfaces. It is noticeable that in the hcp site the segregation behavior of Pd in most Pd_{3}M alloys turns into nonsegregation (large position value of the segregation energy). It is observed that the presence of oxygen in hcp position causes the largest change in segregation energy of Pd, even leading to the reversion of segregation trends of Pd. It may be due to the fact that the high oxygen philicity of some M transition metal elements prohibit the surface segregation of Pd. Although the presence of oxygen in hcp position can revert the segregation behavior of Pd, strong adsorbed oxygenated species in hcp site may cause surface poisoning, which is unfavorable for ORR.

In recent study conducted by RamírezCaballero and coworkers [62], DFT was used to evaluate the surface segregation of Pt, and two groups of cores are investigated, namely, a monolayer Pt over monometallic or bimetallic core. It was found that some 4d and 5d pure cores may serve as stable cores, and bimetallic Pd_{3}X cores could enhance the stability of the surface Pt atoms both in vacuum and under adsorbed oxygen. Our present studies also give similar results for the surface segregation of Pd. It can be observed that Pd still can segregate to surface when Pd alloys with 4d transition metals Mo, Ru, and Rh and 5d transition metals Re, Ir, Pt, and Au, even when oxygen adsorbs in hcp site, as shown in Table 4. Simultaneously, both of our present and previous studies from RamírezCaballero and coworkers all showed that surface segregation can be primarily determined by the surface energy and the atomic size, and metal atoms with larger radii and lower surface energies usually tend to segregate to the surface regardless of being the segregation process of Pd or Pt.
4.2. ORR Catalytic Activity Analysis of PdBased Bimetallic Catalysts
In this section, the adsorption energies of O atom are calculated on the all Pdbased bimetallic catalysts for comparison although some alloys cannot form stable Pd surface segregated structures. As shown in Tables 1, 2, and 3, the DFTcalculated O adsorption energies on Pdsegregated PdSc, PdTi, PdV, PdCr, PdMn, PdFe, PdCo, PdNi, PdCu, PdZn, PdY, PdZr, PdNb, PdMo, PdRu, PdRh, PdAg, PdCd, PdTa, PdW, and PtRe alloys are more positive than that on pure Pt, indicating that these alloy catalysts may have enhanced ORR performance compared with pure Pt.
In order to verify band center model that Hammer and Nørskov proposed, that is, the interaction between surface atoms of metal and adsorbates weakens as downshift of , there is an approximate linear relationship between adsorption energy and [53, 54]. The relationship between O adsorption energies and is given in Figure 6. For all alloys considered in the present study, they mostly have values which are close to or more positive than that on the pure Pt surface except for Pd_{3}Ag, Pd_{3}Ir, Pd_{3}Pt, and Pd_{3}Au alloys. Based on the volcano model of the ORR activity versus values [56], values of alloy surfaces with segregated structure are more positive than that for the pure Pt surface within 0.50 eV; the ORR activity would be close or superior to that of pure Pt. Thus, the Pdbased bimetallic alloys falling between two dash lines in Figure 6 will be potential ORR electrocatalysts. Meanwhile, it can be observed from Figure 6 that the calculated values between Pd_{3}M and Pt roughly linearly correlated with the calculated differences between Pdsegregated Pd_{3}M and Pd. In general, more negative corresponds to more positive , indicating that adsorption characteristics of O on the Pd_{3}M alloy surfaces meet approximately the abovementioned band center model. Therefore, also could be a significant parameter for design of Pdbased alloy catalysts.
To understand the effect of the alloying elements on the electronic structure of the Pd segregated surface, the relationship between the calculated band center, , and number of valence electrons in M is shown in Figure 7. The results show that values first decrease and then increase as the number of valence electrons of alloy elements (M) increase from the left to right in the periodical table when M is 3d or 4d transition metals and there is Vshaped change of values, whereas, for 5d transition metals, the calculated values linearly correlated with the number of valence electrons of alloy elements.
Alloying elements M may be able to affect the electronic structures of the Pd segregated surface by lattice strain (strain effect) or electronic interaction (ligand effect). In general, compressive strain results in downshift of band center, ; namely, the value of becomes more negative than that of the pure Pd. As shown in Figure 8, the values of band center, , as a function of the optimized lattice constant () values are given. One can see from Figure 8 that compressive strain leads to downshift of band center, , as compared with that of pure Pd among all Pd_{3}M alloys that we have considered, regardless of M being 3d, 4d, or 5d transition metals; tensile strain results in upshift of band center, . However, some alloys such as Pd_{3}Sc, Pd_{3}Y, Pd_{3}Zr, Pd_{3}Nb, and Pd_{3}Ta even cause downshift of band center, , although they have larger lattice constants than pure Pd (tensile strain). Therefore, it can be speculated that ligand effect plays important role in determining the downshift or upshift of band center, , of various PdM alloys, and, in some cases, it even can dominate the variation of band center. For example, in Pd_{3}Sc, Pd_{3}Y, Pd_{3}Zr, Pd_{3}Nb, and Pd_{3}Ta alloys, the downshift of band center, , due to the ligand effect is much beyond the upshift caused by lattice expansion.
4.3. Screening of PdBased Bimetallic Alloy Catalysts
Based on the DFTcalculated results (As shown in Figure 9), PdV, PdFe, PdZn, PdNb, PdMo, PtTa, and PtW alloys can meet simultaneously three criteria of design of ORR catalysts; that is, < 0, < 0, and , and the values are within 0.50 eV. However, the formation energy of PdMo and PdW alloys is nearly 0; thus, the stability of these two alloys may be relatively poor. The fact that Pd_{3}Fe have excellent ORR catalytic activity has been reported experimentally [29], which indicated that these three criteria based on DFT calculations are feasible in design of ORR catalysts of Pdbased alloys. The ORR catalytic property of PdV, PdZn, PdNb, and PdTa alloys is rarely reported experimentally, and we think that PdV, PdZn, PdNb, and PdTa alloys as ORR electrocatalysts in PEMFCs deserve further careful study in the future. In the recent experimental studies by Adzic et al. [27, 39, 40], PdCo bimetallic catalyst was found to have enhanced ORR electrocatalytic activity than pure Pt. Based on the value obtained in the present study, PdCo alloy can form a stable Pd surface segregated structure because Co has smaller atomic radius and larger surface energy than Pd. However, according to the value obtained here, the PdCo alloy may have problems in forming stable PdCo alloy due to slightly positive value.
5. Conclusions
Developing catalysts for ORR with low noble metal contents, high catalytic activity, and high stability is the key for largescale application of PEMFCs. We have proposed a multipledescriptor strategy for rational design of efficient and durable ORR alloy catalysts with low precious metal content based on DFT calculations. We argued that good Pdbased bimetallic catalysts for ORR should simultaneously have negative alloy formation energy, negative surface segregation energy of Pd, and lower oxygen binding strength than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry, and electronic properties of PdM alloys (M is 3d, 4d, and 5d transition metals), PdV, PdFe, PdZn, PdNb, and PdTa alloys were identified theoretically to have stable Pd segregated surface and improved ORR activity, among which PdFe alloy has indeed been reported to have excellent ORR catalytic activity. PdV, PdZn, PdNb, and PdTa alloys as ORR electrocatalysts in PEMFCs deserve further experimental study in future.
Factors affecting these properties are analyzed carefully. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction, which makes values of the most of PdM alloys negative due to the large difference in electronegativity except for those in which the alloying transition metals have valence electrons numbers close to Pd. This may be the origin of the negative for PdM alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding PdM alloys. In some cases, atomic radius can determine the direction of surface segregation of Pd. For instance, PdTi, PdCu, and PdZn alloys, in which Ti possesses a much slight larger atomic radius than Pd, are still predicted to have positive segregation energy of Pd although its slightly higher surface energies than Pd, Cu, and Zn possess much smaller atomic radii than Pd and are still predicted to have a slight trend of Pd surface segregation, in spite of their very low relative to that of Pd. Noticeably, although metal Cr has higher surface energy and lower atomic radius than Pd, Pd_{3}Cr alloy has positive segregation energy of Pd, indicating that electronic interaction may play the major role in determining the segregation energy of Pd in Pd_{3}Cr alloy.
The calculated oxygen adsorption energy on the Pd segregated surface roughly linearly correlated with the calculated band center of surface Pd atoms. Alloying elements M affect the band center by strain effect and ligand effect. Compressive strain generally causes downshift of band center, and tensile strain leads to upshift of band center. However, Pd_{3}Sc, Pd_{3}Y, Pd_{3}Zr, Pd_{3}Nb, and Pd_{3}Ta alloys exhibit downshift of band center although they have larger lattice constants than pure Pd, indicating that ligand effect can dominate the variation of band center of surface Pd atoms in some cases. In these five alloys, the downshift of band center due to ligand effect is much beyond the upshift caused by lattice expansion.
Conflict of Interests
The author declares that they have no conflict of interests.
Acknowledgments
This work is financially supported by National Natural Science Foundation of China (Grant no. 21303048), Hunan Provincial Natural Science Foundation of China (Grant no. 13JJ4101), the Construct Program of the Key Discipline in Hunan Province (Applied Chemistry), and Doctoral Startup Fund of Hunan University of Arts and Science.
References
 C. Wang, N. M. Markovic, and V. R. Stamenkovic, “Advanced platinum alloy electrocatalysts for the oxygen reduction reaction,” ACS Catalysis, vol. 2, no. 5, pp. 891–898, 2012. View at: Publisher Site  Google Scholar
 F. Tao, M. E. Grass, Y. Zhang et al., “Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions,” Journal of the American Chemical Society, vol. 132, no. 25, pp. 8697–8703, 2010. View at: Publisher Site  Google Scholar
 J. Greeley and M. Mavrikakis, “Alloy catalysts designed from first principles,” Nature Materials, vol. 3, no. 11, pp. 810–815, 2004. View at: Publisher Site  Google Scholar
 V. R. Stamenkovic, B. S. Mun, M. Arenz et al., “Trends in electrocatalysis on extended and nanoscale Ptbimetallic alloy surfaces,” Nature Materials, vol. 6, no. 3, pp. 241–247, 2007. View at: Publisher Site  Google Scholar
 P. Strasser, S. Koh, T. Anniyev et al., “Latticestrain control of the activity in dealloyed core—shell fuel cell catalysts,” Nature Chemistry, vol. 2, no. 6, pp. 454–460, 2010. View at: Publisher Site  Google Scholar
 T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, “Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co,” Journal of the Electrochemical Society, vol. 146, no. 10, pp. 3750–3756, 1999. View at: Publisher Site  Google Scholar
 W. Z. Li, Z. W. Chen, L. B. Xu, and Y. S. Yan, “A solutionphase synthesis method to highly active PtCo/C electrocatalysts for proton exchange membrane fuel cell,” Journal of Power Sources, vol. 195, no. 9, pp. 2534–2540, 2010. View at: Publisher Site  Google Scholar
 V. R. Stamenkovic, B. Fowler, B. S. Mun et al., “Improved oxygen reduction activity on Pt_{3}Ni(111) via increased surface site availability,” Science, vol. 315, no. 5811, pp. 493–497, 2007. View at: Publisher Site  Google Scholar
 S. Koh and P. Strasser, “Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying,” Journal of the American Chemical Society, vol. 129, no. 42, pp. 12624–12625, 2007. View at: Publisher Site  Google Scholar
 S. Chen, W. C. Sheng, N. Yabuuchi, P. J. Ferreira, L. F. Allard, and Y. ShaoHorn, “Origin of oxygen reduction reaction activity on ‘Pt_{3}Co’ nanoparticles: atomically resolved chemical compositions and structures,” Journal of Physical Chemistry C, vol. 113, no. 3, pp. 1109–1125, 2009. View at: Publisher Site  Google Scholar
 M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, and M. Watanabe, “Increased oxygen coverage at PtFe alloy cathode for the enhanced oxygen reduction reaction studied by ECXPS,” Journal of Physical Chemistry C, vol. 112, no. 7, pp. 2750–2755, 2008. View at: Publisher Site  Google Scholar
 V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer et al., “Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure,” Angewandte Chemie International Edition, vol. 45, no. 18, pp. 2897–2901, 2006. View at: Publisher Site  Google Scholar
 U. A. Paulus, A. Wokaun, G. G. Scherer et al., “Oxygen reduction on carbonsupported PtNi and PtCo alloy catalysts,” Journal of Physical Chemistry B, vol. 106, no. 16, pp. 4181–4191, 2002. View at: Publisher Site  Google Scholar
 S. Koh, J. Leisch, M. F. Toney, and P. Strasser, “Structureactivitystability relationships of PtCo alloy electrocatalysts in gasdiffusion electrode layers,” Journal of Physical Chemistry C, vol. 111, no. 9, pp. 3744–3752, 2007. View at: Publisher Site  Google Scholar
 H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, “Activity benchmarks and requirements for Pt, Ptalloy, and nonPt oxygen reduction catalysts for PEMFCs,” Applied Catalysis B: Environmental, vol. 56, no. 12, pp. 9–35, 2005. View at: Publisher Site  Google Scholar
 C. Wang, M. Chi, D. Li et al., “Synthesis of homogeneous Ptbimetallic nanoparticles as highly efficient electrocatalysts,” ACS Catalysis, vol. 1, no. 10, pp. 1355–1359, 2011. View at: Publisher Site  Google Scholar
 A. S. Aricó, A. Stassi, I. Gatto, G. Monforte, E. Passalacqua, and V. Antonucci, “Surface properties of Pt and PtCo electrocatalysts and their influence on the performance and degradation of hightemperature polymer electrolyte fuel cells,” Journal of Physical Chemistry C, vol. 114, no. 37, pp. 15823–15836, 2010. View at: Publisher Site  Google Scholar
 K. Matsutani, T. Tada, and K. Hayakawa, “Effect of particle size of platinum and platinumcobalt catalysts on stability against load cycling,” Platinum Metals Review, vol. 54, no. 4, pp. 223–232, 2010. View at: Publisher Site  Google Scholar
 P. Yu, M. Pemberton, and P. Plasse, “PtCo/C cathode catalyst for improved durability in PEMFCs,” Journal of Power Sources, vol. 144, no. 1, pp. 11–20, 2005. View at: Publisher Site  Google Scholar
 N. Wakabayashi, M. Takeichi, H. Uchida, and M. Watanabe, “Temperature dependence of oxygen reduction activity at Pt–Fe, Pt–Co, and Pt–Ni alloy electrodes,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5836–5841, 2005. View at: Publisher Site  Google Scholar
 R. Loukrakpam, J. Luo, T. He et al., “Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties,” Journal of Physical Chemistry C, vol. 115, no. 5, pp. 1682–1694, 2011. View at: Publisher Site  Google Scholar
 P. Mani, R. Srivastava, and P. Strasser, “Dealloyed binary PtM3 (M $=$ Cu, Co, Ni) and ternary PtNi_{3}M (M $=$ Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 196, no. 2, pp. 666–673, 2011. View at: Publisher Site  Google Scholar
 O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, and K. I. Ota, “New palladium alloys catalyst for the oxygen reduction reaction in an acid medium,” Electrochemistry Communications, vol. 6, no. 2, pp. 105–109, 2004. View at: Publisher Site  Google Scholar
 V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd–Co–Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells,” Journal of Physical Chemistry B, vol. 109, no. 48, pp. 22909–22912, 2005. View at: Publisher Site  Google Scholar
 M. H. Shao, T. Huang, P. Liu et al., “Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction,” Langmuir, vol. 22, no. 25, pp. 10409–10415, 2006. View at: Publisher Site  Google Scholar
 K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, and K. I. Ota, “Methanoltolerant oxygen reduction electrocatalysts based on Pd3D transition metal alloys for direct methanol fuel cells,” Journal of the Electrochemical Society, vol. 153, no. 1, pp. A20–A24, 2006. View at: Publisher Site  Google Scholar
 L. Zhang, K. Lee, and J. Zhang, “The effect of heat treatment on nanoparticle size and ORR activity for carbonsupported PdCo alloy electrocatalysts,” Electrochimica Acta, vol. 52, no. 9, pp. 3088–3094, 2007. View at: Publisher Site  Google Scholar
 R. R. Adzic, “Palladiumcobalt particles as oxygenreduction electrocatalysts,” in Proceedings of the DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Meeting, Philadelphia, Pa, USA, 2004. View at: Google Scholar
 M. H. Shao, K. Sasaki, and R. R. Adzic, “Pd–Fe nanoparticles as electrocatalysts for oxygen reduction,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3526–3527, 2006. View at: Publisher Site  Google Scholar
 J. L. Fernández, D. A. Walsh, and A. J. Bard, “Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. MCo (M: Pd, Ag, Au),” Journal of the American Chemical Society, vol. 127, no. 1, pp. 357–365, 2005. View at: Publisher Site  Google Scholar
 S. Guerin, B. E. Hayden, C. E. Lee et al., “Combinatorial electrochemical screening of fuel cell electrocatalysts,” Journal of Combinatorial Chemistry, vol. 6, no. 1, pp. 149–158, 2004. View at: Publisher Site  Google Scholar
 J. Greeley, J. K. Nørskov, and M. Mavrikakis, “Electronic structure and catalysis on metal surfaces,” Annual Review of Physical Chemistry, vol. 53, pp. 319–348, 2002. View at: Publisher Site  Google Scholar
 J. L. Fernández, V. Raghuveer, A. Manthiram, and A. J. Bard, “PdTi and PdCoAu electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells,” Journal of the American Chemical Society, vol. 127, no. 38, pp. 13100–13101, 2005. View at: Publisher Site  Google Scholar
 J. L. Fernández, J. Michael White, Y. Sun, W. Tang, G. Henkelman, and A. J. Bard, “Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods,” Langmuir, vol. 22, no. 25, pp. 10426–10431, 2006. View at: Publisher Site  Google Scholar
 Y. X. Wang and P. B. Balbuena, “Design of oxygen reduction bimetallic catalysts: abinitioderived thermodynamic guidelines,” Journal of Physical Chemistry B, vol. 109, no. 40, pp. 18902–18906, 2005. View at: Publisher Site  Google Scholar
 Y. Wang and P. B. Balbuena, “Potential energy surface profile of the oxygen reduction reaction on a Pt cluster:adsorption and decomposition of OOH and H_{2}O_{2},” Journal of Chemical Theory and Computation, vol. 1, no. 5, pp. 935–943, 2005. View at: Publisher Site  Google Scholar
 M. R. Tarasevich, G. V. Zhutaeva, V. A. Bogdanovskaya, M. V. Radina, M. R. Ehrenburg, and A. E. Chalykh, “Oxygen kinetics and mechanism at electrocatalysts on the base of palladiumiron system,” Electrochimica Acta, vol. 52, no. 15, pp. 5108–5118, 2007. View at: Publisher Site  Google Scholar
 E. J. Lamas and P. B. Balbuena, “Oxygen reduction on Pd_{0.75}Co_{0.25} (111) and Pt_{0.75}Co_{0.25} (111) surfaces: an ab initio comparative study,” Journal of Chemical Theory and Computation, vol. 2, no. 5, pp. 1388–1394, 2006. View at: Publisher Site  Google Scholar
 M. Shao, P. Liu, J. Zhang, and R. R. Adzic, “Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction,” Journal of Physical Chemistry B, vol. 111, no. 24, pp. 6772–6775, 2007. View at: Publisher Site  Google Scholar
 Y. Suo, L. Zhuang, and J. Lu, “Firstprinciples considerations in the design of Pdalloy catalysts for oxygen reduction,” Angewandte Chemie International Edition, vol. 46, no. 16, pp. 2862–2864, 2007. View at: Publisher Site  Google Scholar
 V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, and N. M. Markovic, “Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pttransition metal alloys: Ptskin versus Ptskeleton surfaces,” Journal of the American Chemical Society, vol. 128, no. 27, pp. 8813–8819, 2006. View at: Publisher Site  Google Scholar
 J. L. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, “Mixedmetal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics,” Journal of the American Chemical Society, vol. 127, no. 36, pp. 12480–12481, 2005. View at: Publisher Site  Google Scholar
 S. R. Calvo and P. B. Balbuena, “Theoretical analysis of reactivity on Pt(1 1 1) and Pt–Pd(1 1 1) alloys,” Surface Science, vol. 601, no. 1, pp. 4786–4792, 2007. View at: Publisher Site  Google Scholar
 J. K. Nørskov, J. Rossmeisl, A. Logadottir et al., “Origin of the overpotential for oxygen reduction at a fuel cell cathode,” Journal of Physical Chemistry B, vol. 108, no. 46, pp. 17886–17892, 2004. View at: Publisher Site  Google Scholar
 J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at: Publisher Site  Google Scholar
 D. Vanderbilt, “Soft selfconsistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no. 11, pp. 7892–7895, 1990. View at: Publisher Site  Google Scholar
 M. Methfessel and A. T. Paxton, “Highprecision sampling for Brillouinzone integration in metals,” Physical Review B, vol. 40, no. 6, pp. 3616–3621, 1989. View at: Publisher Site  Google Scholar
 S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, PWSCF and PHONON: planewave pseudopotential codes, 2001, http://www.pwscf.org/.
 A. Kokalj, “XCrySDen—a new program for displaying crystalline structures and electron densities,” Journal of Molecular Graphics and Modelling, vol. 17, no. 34, pp. 176–179, 1999. View at: Publisher Site  Google Scholar
 A. Kokalj and M. Causa, “Scientific visualization in computational quantum chemistry,” in Proceedings of the High Performance Graphics Systems and Applications European Workshop, CINECAInteruniversity Consortium, Bologna, Italy, 2000. View at: Google Scholar
 A. Kokalj and M. Causà, XCrySDen: [XWindow] CRYstalline Structures and DENsities, 2001, http://www.xcrysden.org/.
 S. Mukerjee, S. Srinivasan, and M. P. Soriaga, “Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction,” Journal of the Electrochemical Society, vol. 142, no. 5, pp. 1409–1422, 1995. View at: Publisher Site  Google Scholar
 B. Hammer and J. K. Nørskov, “Electronic factors determining the reactivity of metal surfaces,” Surface Science, vol. 343, no. 3, pp. 211–220, 1995. View at: Publisher Site  Google Scholar
 B. Hammer and J. K. Norskov, “Why gold is the noblest of all the metals,” Nature, vol. 376, no. 6537, pp. 238–240, 1995. View at: Publisher Site  Google Scholar
 L. H. Ou and S. L. Chen, “Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT,” Journal of Physical Chemistry C, vol. 117, no. 3, pp. 1342–1349, 2013. View at: Publisher Site  Google Scholar
 J. Greeley, I. E. L. Stephens, A. S. Bondarenko et al., “Alloys of platinum and early transition metals as oxygen reduction electrocatalysts,” Nature Chemistry, vol. 1, no. 7, pp. 552–556, 2009. View at: Publisher Site  Google Scholar
 A. Peter and L. Jones, Chemistry: Molecules, Matter and Change, W. H. Freeman, New York, NY, USA, 1997.
 O. M. Løvvik, “Surface segregation in palladium based alloys from densityfunctional calculations,” Surface Science, vol. 583, no. 1, pp. 100–106, 2005. View at: Publisher Site  Google Scholar
 J. K. Nørskov, T. Bligaard, A. Logadottir et al., “Universality in heterogeneous catalysis,” Journal of Catalysis, vol. 209, no. 2, pp. 275–278, 2002. View at: Publisher Site  Google Scholar
 N. L. Allinger, X. Zhou, and J. Bergsma, “Molecular mechanics parameters,” Journal of Molecular Structure: THEOCHEM, vol. 312, no. 1, pp. 69–83, 1994. View at: Publisher Site  Google Scholar
 F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, NorthHolland Publishing, Amsterdam, The Netherlands, 1988.
 G. E. RamírezCaballero, Y. Ma, R. CallejasTovar, and P. B. Balbuena, “Surface segregation and stability of coreshell alloy catalysts for oxygen reduction in acid medium,” Physical Chemistry Chemical Physics, vol. 12, no. 9, pp. 2209–2218, 2010. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2015 Lihui Ou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.