Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015 (2015), Article ID 963041, 9 pages
http://dx.doi.org/10.1155/2015/963041
Research Article

Streptomyces lavendulae Protease Inhibitor: Purification, Gene Overexpression, and 3-Dimensional Structure

1Microbiology Department, National Center for Radiation Research and Technology (NCRRT), 3 Ahmed El-Zomor Street, 8th Sector, Nasr City, Cairo 11371, Egypt
2Microbial Chemistry Department, National Research Centre (NRC), El-Bohouth Street, P.O. Box 12622, Dokki, Cairo, Egypt

Received 12 April 2015; Accepted 5 July 2015

Academic Editor: Ioannis G. Roussis

Copyright © 2015 D. E. El-Hadedy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. P. Rang, M. M. Dale, J. M. Ritter, and R. J. Flower, Dale's Pharmacology, Churchill Livingstone Elsevier, 6th edition, 2007.
  2. P. Pyrko, A. Kardosh, W. Wang, W. Xiong, A. H. Schönthal, and T. C. Chen, “HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress,” Cancer Research, vol. 67, no. 22, pp. 10920–10928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. S. Mayer and V. K. B. Lehmann, “Marine pharmacology,” Pharmacology, vol. 42, pp. 62–69, 2000. View at Google Scholar
  4. C. Imada, “Enzyme inhibitors of marine microbial origin with pharmaceutical importance,” Marine Biotechnology, vol. 6, no. 3, pp. 193–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Kim and J. H. Nam, “Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines,” Expert Opinion on Biological Therapy, vol. 10, no. 2, pp. 179–190, 2010. View at Publisher · View at Google Scholar
  6. T. Koho, M. R. L. Koivunen, S. Oikarinen et al., “Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice,” Antiviral Research, vol. 104, no. 1, pp. 93–101, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Martin, N. Jarasch, M. Nestler et al., “Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3,” Apoptosis, vol. 12, no. 3, pp. 525–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D.-S. Kim and J.-H. Nam, “Application of attenuated coxsackievirus B3 as a viral vector system for vaccines and gene therapy,” Human Vaccines, vol. 7, no. 4, pp. 410–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Wang, Y. Qin, L. Tong et al., “MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region,” Antiviral Research, vol. 93, no. 2, pp. 270–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. El-Hadedy, M. S. Moataza, and H. M. Hassan, “Protease inhibitor expression with immobilized cells of Egyptian Streptomyces lavendulae on different radiated matrices using gamma radiation,” World Journal of Pharmaceutical Sciences, vol. 2, no. 9, p. 899, 2014. View at Google Scholar
  11. G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, “Biosynthesis of the lantibiotic Nisin; genomic organizationand membrane localization of the nisB protein,” Applied and Environmental Microbiology, vol. 58, no. 11, pp. 3730–3743, 1992. View at Google Scholar · View at Scopus
  12. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 2nd edition, 1989.
  13. N. Horn, S. Swindell, H. Dodd, and M. Gasson, “Nisin biosynthesis genes are encoded by a novel conjugative transposon,” Molecular and General Genetics, vol. 228, no. 1-2, pp. 129–135, 1991. View at Google Scholar · View at Scopus
  14. J. M. Wells, P. W. Wilson, and R. W. F. Le Page, “Improved cloning vectors and transformation procedure for Lactococcus lactis,” Journal of Applied Bacteriology, vol. 74, no. 6, pp. 629–636, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Wagner, M. L. Bader, D. Drew, and J.-W. de Gier, “Rationalizing membrane protein overexpression,” Trends in Biotechnology, vol. 24, no. 8, pp. 364–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Tsuchida, Y. Yamagata, T. Ishizuka et al., “An alkaline proteinase of an alkalophilic Bacillus sp.,” Current Microbiology, vol. 14, no. 1, pp. 7–12, 1986. View at Publisher · View at Google Scholar · View at Scopus
  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  18. J. W. M. Mulders, I. J. Boerrigter, H. S. Rollema, R. J. Siezen, and W. M. De Vos, “Identification and characterization of the lantibiotic nisin Z, a natural nisin variant,” European Journal of Biochemistry, vol. 201, no. 3, pp. 581–584, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. N. B. S. Abid, Z. Rouis, M. A. Lassoued, S. Sfar, and M. Aouni, “Assessment of the cytotoxic effect and in vitro evaluation of the anti-enteroviral activities of plants rich in flavonoids,” Journal of Applied Pharmaceutical Science, vol. 2, no. 5, pp. 74–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Karber, “50% end point calculation,” Archives of Experimental Pathology and Pharmacology, vol. 162, pp. 480–483, 1931. View at Google Scholar
  21. S. C. J. Bastos, K. K. Luciana, F. Fabiana et al., “Antiviral activity of Bacillus sp. isolated from the marine sponge Petromica citrina against bovine viral diarrhea virus, a surrogate model of the hepatitis C virus,” Viruses, vol. 5, pp. 1219–1230, 2013. View at Google Scholar
  22. S. Murao and S. Sato, “S-SI, a new alkaline protease inhibitor from Streptomyces albogriseolns S-3253,” Agricultural and Biological Chemistry, vol. 36, pp. 160–163, 1972. View at Publisher · View at Google Scholar
  23. S. Sato and S. Murao, “Isolation and crystallization of microbial alkaline protease inhibitor, S-SI,” Agricultural and Biological Chemistry, vol. 37, no. 5, pp. 1067–1074, 1973. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Kassell, “[66] Naturally occurring inhibitors of proteolytic enzymes,” Methods in Enzymology, vol. 19, p. 839, 1970. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Hedstrom, “Serine protease mechanism and specificity,” Chemical Reviews, vol. 102, no. 12, pp. 4501–4523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. G. C. Mello, M. L. V. Oliva, J. T. Sumikawa et al., “Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds,” Journal of Protein Chemistry, vol. 20, no. 8, pp. 625–632, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. R. Macedo, V. A. Garcia, M. G. M. Freire, and M. Richardson, “Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW.) Willd,” Phytochemistry, vol. 68, no. 8, pp. 1184–1111, 2007. View at Google Scholar
  28. A. D. P. G. Gomes, S. C. Dias, C. Bloch Jr. et al., “Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds,” Comparative Biochemistry and Physiology B: Biochemistry & Molecular Biology, vol. 140, no. 2, pp. 313–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Oliveira, L. Migliolo, R. O. Aquino et al., “Two kunitz-type inhibitors with activity against trypsin and papain from Pithecellobium dumosum seeds: purification, characterization, and activity towards pest insect digestive enzyme,” Protein and Peptide Letters, vol. 16, no. 12, pp. 1526–1532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. S. Satheesh and K. Murugan, “Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt,” Indian Journal of Experimental Biology, vol. 49, no. 5, pp. 366–374, 2011. View at Google Scholar · View at Scopus
  31. A. Bhattacharyya, S. Mazumdar, S. M. Leighton, and C. R. Babu, “A Kunitz proteinase inhibitor from Archidendron ellipticum seeds: purification, characterization, and kinetic properties,” Phytochemistry, vol. 67, no. 3, pp. 232–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Suzuki, M. Uyeda, and M. Shibata, “API-2c, a new alkaline protease inhibitor produced by Streptomyces griseoincarnatus strain no. KTo-250,” Agricultural and Biological Chemistry, vol. 42, no. 8, pp. 1539–1543, 1978. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Uyeda, K. Suzuki, Y. Umemoto, I. Matsuzaki, and M. Shibata, “Some properties of an alkaline protease inhibitor, AP-I, and its effect on α-chymotrypsin and trypsin,” Agricultural and Biological Chemistry, vol. 44, pp. 2549–2553, 1980. View at Google Scholar
  34. M. Laskowski Jr. and I. Kato, “Protein inhibitors of proteinases,” Annual Review of Biochemistry, vol. 49, pp. 593–626, 1980. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Krowarsch, T. Cierpicki, F. Jelen, and J. Otlewski, “Canonical protein inhibitors of serine proteases,” Cellular and Molecular Life Sciences, vol. 60, no. 11, pp. 2427–2444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Bode and R. Huber, “Structural basis of the endoproteinase-protein inhibitor interaction,” Biochimica et Biophysica Acta—Protein Structure and Molecular Enzymology, vol. 1477, no. 1-2, pp. 241–252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. H. K. Song and S. W. Suh, “Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator,” Journal of Molecular Biology, vol. 275, no. 2, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Krauchenco, S. C. Pando, S. Marangoni, and I. Polikarpov, “Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds,” Biochemical and Biophysical Research Communications, vol. 312, no. 4, pp. 1303–1308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. S. M. Cavalcanti, M. L. V. Oliva, H. Fritz et al., “Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii,” Biochemical and Biophysical Research Communications, vol. 291, no. 3, pp. 635–639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. K. Dattagupta, A. Podder, C. Chakrabarti, U. Sen, S. K. Dutta, and M. Singh, “Structure of a Kunitz-type chymotrypsin inhibitor from winged bean seeds at 2.95 Å resolution,” Acta Crystallographica—Section D: Biological Crystallography, vol. 52, no. 3, pp. 521–528, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. J. T. Sumikawa, A. M. Nakahata, H. Fritz, R. Mentele, M. U. Sampaio, and M. L. V. Oliva, “A Kunitz-type glycosylated elastase inhibitor with one disulfide bridge,” Planta Medica, vol. 72, no. 5, pp. 393–397, 2006. View at Publisher · View at Google Scholar · View at Scopus