Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016, Article ID 2176576, 11 pages
http://dx.doi.org/10.1155/2016/2176576
Research Article

Liquid-Phase Ethanol Oxidation and Gas-Phase CO Oxidation Reactions over M Doped (M = Ag, Au, Pd, and Ni) and MM′ Codoped CeO2 Nanoparticles

1Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
2Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India

Received 14 October 2016; Revised 13 November 2016; Accepted 22 November 2016

Academic Editor: Stojan Stavber

Copyright © 2016 Yohan Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Transition metal doped metal oxides have been studied extensively for potential applications to environments and chemical industry. Herein, M doped (M = Ag, Au, Pd, and Ni) and MM′ codoped CeO2 nanoparticles (NPs) were prepared by a hydrothermal method and their liquid-phase ethanol and gas-phase CO oxidation performances were examined by UV-visible absorption spectroscopy and temperature programmed mass spectrometry, respectively. The ethanol and CO oxidation performances were enhanced greatly by metal-doping and were dependent on the relative concentration of codoped metals. For ethanol oxidation, the concentration of acetaldehyde became saturated at low levels, while that of ethyl acetate continuously increased to become a final major product. For M doped CeO2 NPs, the ethanol oxidation performance showed an order of Ni < Ag < Pd Au. For MM′ codoped CeO2 NPs, the activity of Au doped CeO2 deteriorated drastically upon adding other metals (Ag, Ni, and Pd) as a cocatalyst.