Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016 (2016), Article ID 2739832, 7 pages
http://dx.doi.org/10.1155/2016/2739832
Research Article

Synthesis and Bacteriostatic Activities of Bis(thiourea) Derivatives with Variable Chain Length

Department of Chemistry, Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received 1 September 2016; Revised 18 November 2016; Accepted 24 November 2016

Academic Editor: Radhey Srivastava

Copyright © 2016 Ainaa Nadiah Abd Halim and Zainab Ngaini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ili, M. Bucos, F. Dumitracu, and V. Cîrcu, “Mesomorphic behaviour of N-benzoyl-N′-aryl thioureas liquid crystalline compounds,” Journal of Molecular Structure, vol. 987, no. 1–3, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Murru, C. B. Singh, V. Kavala, and B. K. Patel, “A convenient one-pot synthesis of thiazol-2-imines: application in the construction of pifithrin analogues,” Tetrahedron, vol. 64, no. 8, pp. 1931–1942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Müller, C. Limban, B. Stadelmann et al., “Thioureides of 2-(phenoxymethyl) benzoic acid 4-R substituted: a novel class of anti-parasitic compounds,” Parasitology International, vol. 58, no. 2, pp. 128–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Shing, J. W. Choi, R. Chapman et al., “A novel synthetic 1,3-phenyl bis-thiourea compound targets microtubule polymerization to cause cancer cell death,” Cancer Biology & Therapy, vol. 15, no. 7, pp. 895–905, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Saturnino, M. D'Auria, N. Paesano et al., “Antioxidant activity of thioureidic derivatives I,” Il Farmaco, vol. 58, no. 9, pp. 823–828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Venkatesh and S. N. Pandeya, “Synthesis and anti-oxidant activity of some N-(anilinocarbonothioyl) benzamide and heterocyclic based thiourea derivatives,” International Journal of ChemTech Research, vol. 1, no. 3, pp. 733–741, 2009. View at Google Scholar · View at Scopus
  7. P. B. Kaswala, K. H. Chikhalia, N. K. Shah, D. P. Patel, D. H. Patel, and G. V. Mudaliar, “Design, synthesis and antimicrobial evaluation of s-triazinyl urea and thiourea derivatives,” Arkivoc, vol. 2009, no. 11, pp. 326–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Ngaini, M. A. Mohd Arif, H. Hussain, E. S. Mei, D. Tang, and D. H. A. Kamaluddin, “Synthesis and antibacterial activity of acetoxybenzoyl thioureas with aryl and amino acid side Chains,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 187, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. W. S. H. Wan Zullkiplee, A. N. Abd Halim, Z. Ngaini, M. A. Mohd Ariff, and H. Hussain, “Bis-Thiourea bearing aryl and amino acids side chains and their antibacterial activities,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 189, no. 6, pp. 832–838, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. N. I. M. Halim, K. Kassim, A. H. Fadzil, and B. M. Yamin, “Synthesis, characterisation and antibacterial studies of Cu(II) complexes thiourea,” Malaysian Journal of Analytical Sciences, vol. 16, no. 1, pp. 56–61, 2012. View at Google Scholar · View at Scopus
  11. J. Wu, Q. Shi, Z. Chen, M. He, L. Jin, and D. Hu, “Synthesis and bioactivity of pyrazole acyl thiourea derivatives,” Molecules, vol. 17, no. 5, pp. 5139–5150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. F. M. Uckun, C. Mao, S. Pendergrass et al., “N-[2-(4-methylphenyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea as a potent inhibitor of NNRTI-resistant and multidrug-resistant human immunodeficiency virus type 1,” Antiviral Chemistry and Chemotherapy, vol. 11, no. 2, pp. 135–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Küçükgüzel, E. Tatar, Ş. G. Küçükgüzel, S. Rollas, and E. De Clercq, “Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents,” European Journal of Medicinal Chemistry, vol. 43, no. 2, pp. 381–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. I. M. Halim, K. Kassim, A. H. Fadzil, and B. M. Yamin, “Synthesis, characterization and antibacterial studies of benzoylthiourea derivatives,” IPCBEE, vol. 14, pp. 55–59, 2011. View at Google Scholar
  15. M. O. Uwaisulqarni and M. B. Yamin, “Synthesis and structural study of bis-thiourea moieties with aromatic linkers,” in Proceedings of the 11th International Annual Symposium on Sustainability Science and Management, Universiti Malaysia Terengganu, 2012.
  16. Z. Zhong, R. Xing, S. Liu, L. Wang, S. Cai, and P. Li, “Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro,” Carbohydrate Research, vol. 343, no. 3, pp. 566–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Huang, Y. Sun, W. Yang et al., “[583] ACH-806: a potent inhibitor of HCV replication with a novel mechanism of action,” Journal of Hepatology, vol. 46, p. S221, 2007. View at Publisher · View at Google Scholar
  18. S. Saeed, N. Rashid, P. G. Jones, M. Ali, and R. Hussain, “Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents,” European Journal of Medicinal Chemistry, vol. 45, no. 4, pp. 1323–1331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. S. Reddy, A. S. Rao, M. A. Chari, V. R. Kumar, V. Jyothy, and V. Himabindu, “Synthesis and antibacterial activity of sulfonamide derivatives at C-8 alkyl chain of anacardic acid mixture isolated from a natural product cashew nut shell liquid (CNSL),” Journal of Chemical Sciences, vol. 124, no. 3, pp. 723–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. C. R. Birnie, D. Malamud, and R. L. Schnaare, “Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 9, pp. 2514–2517, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. K. D. Park, Y. S. Park, S. J. Cho et al., “Antimicrobial activity of 3-O-Acyl-(-)-epicatechin and 3-O-Acyl-(+)- catechin derivatives,” Planta Medica, vol. 70, no. 3, pp. 272–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Ngaini, S. M. Haris Fadzillah, and H. Hussain, “Synthesis and antimicrobial studies of hydroxylated chalcone derivatives with variable chain length,” Natural Product Research, vol. 26, no. 10, pp. 892–902, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. N. B. Pappano, O. N. P. Centorbi De, and F. H. Ferretti, “Determination of the responsible molecular zone for the chalcones bacteriostatic activity,” Revista de Microbiologia, vol. 25, no. 3, pp. 168–174, 1994. View at Google Scholar · View at Scopus
  24. O. Trott and A. J. Olson, “Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. M. Morris, H. Ruth, W. Lindstrom et al., “AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. George, M. B. Ramzeena, S. V. Ram, S. K. Selvaraj, S. Rajan, and T. K. Ravi, “Design, docking, synthesis and anti E. coli screening of novel thiadiazolo thiourea derivatives as possible inhibitors of enoyl ACP reductase (FabI) enzyme,” Bangladesh Journal of Pharmacology, vol. 9, no. 1, pp. 49–53, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Saeed, N. Abbas, Z. Ashraf, and M. Bolte, “Synthesis, characterization and antibacterial activity of new 1, 2-and 1, 4-bis (N'-substituted thioureido) benzene derivatives,” South African Journal of Chemistry, vol. 66, pp. 273–278, 2013. View at Google Scholar · View at Scopus
  28. A. Saeed, H. Rafique, A. Hameed, and S. Rasheed, “Synthesis and antibacterial activity of some new 1-aroyl-3-(substituted-2-benzothiazolyl)thioureas,” Pharmaceutical Chemistry Journal, vol. 42, article 191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. K. Rauf, Imtiaz-ud-Din, A. Badshah et al., “Synthesis, structural characterization and in vitro cytotoxicity and anti-bacterial activity of some copper (I) complexes with N, N′-disubstituted thioureas,” Journal of Inorganic Biochemistry, vol. 103, no. 8, pp. 1135–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. De Los Angeles Alvarez, V. E. P. Zarelli, N. B. Pappano, and N. B. Debattista, “Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli,” Biocell, vol. 28, no. 1, pp. 31–34, 2004. View at Google Scholar · View at Scopus
  31. D. Greenwood, R. Slack, and J. Peutherer, “Medical microbiology,” in A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control, ELST Publishers, Edinburgh, UK, 15th edition, 1997. View at Google Scholar
  32. H. Arslan, N. Duran, G. Borekci, C. K. Ozer, and C. Akbay, “Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes,” Molecules, vol. 14, no. 1, pp. 519–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Devínsky, A. Kopecka-Leitmanová, F. Šeršeň, and P. Balgavý, “Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides,” Journal of Pharmacy and Pharmacology, vol. 42, no. 11, pp. 790–794, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. P.-C. Lv, H.-Q. Li, J. Sun, Y. Zhou, and H.-L. Zhu, “Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents,” Bioorganic and Medicinal Chemistry, vol. 18, no. 13, pp. 4606–4614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. He, Y. Wang, L. Tang et al., “Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking,” Journal of Fluorescence, vol. 18, no. 2, pp. 433–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Kvasnica, J. Oklestkova, V. Bazgier, L. Rarova, K. Berka, and M. Strnad, “Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain,” Steroids, vol. 85, pp. 58–64, 2014. View at Publisher · View at Google Scholar · View at Scopus