Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016, Article ID 6025905, 13 pages
http://dx.doi.org/10.1155/2016/6025905
Research Article

Variations of the Physicochemical Parameters and Metal Levels and Their Risk Assessment in Urbanized Bagmati River, Kathmandu, Nepal

1State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
3University of Chinese Academy of Sciences, Beijing 100049, China
4Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland
5CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
6Department of Environmental Science and Engineering, School of Science, Kathmandu University, Dhulikhel, Nepal

Received 14 July 2016; Revised 14 September 2016; Accepted 13 October 2016

Academic Editor: Franco Tassi

Copyright © 2016 Rukumesh Paudyal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Armitage, M. J. Bowes, and H. M. Vincent, “Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the river Nent (Cumbria, UK) after 28 years,” River Research and Applications, vol. 23, no. 9, pp. 997–1015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G.-L. Yuan, C. Liu, L. Chen, and Z. Yang, “Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 336–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Islam, M. K. Ahmed, M. Raknuzzaman, M. Habibullah -Al- Mamun, and M. K. Islam, “Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country,” Ecological Indicators, vol. 48, pp. 282–291, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Sillanpää, R. Hulkkonen, and A. Manderscheid, “Drinking water quality in the alpine pastures of the eastern Tibetan plateau,” Rangifer, vol. 24, no. 15, pp. 47–52, 2004. View at Publisher · View at Google Scholar
  5. T. Srebotnjak, G. Carr, A. de Sherbinin, and C. Rickwood, “A global Water Quality Index and hot-deck imputation of missing data,” Ecological Indicators, vol. 17, pp. 108–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Su, R. Xiao, X. Mi, X. Xu, Z. Zhang, and J. Wu, “Spatial determinants of hazardous chemicals in surface water of Qiantang River, China,” Ecological Indicators, vol. 24, pp. 375–381, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Islam, S. Han, M. K. Ahmed, and S. Masunaga, “Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh,” Journal of Water and Environment Technology, vol. 12, no. 2, pp. 109–121, 2014. View at Publisher · View at Google Scholar
  8. B. Koukal, J. Dominik, D. Vignati et al., “Assessment of water quality and toxicity of polluted Rivers Fez and Sebou in the region of Fez (Morocco),” Environmental Pollution, vol. 131, no. 1, pp. 163–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. M. Mohiuddin, H. M. Zakir, K. Otomo, S. Sharmin, and N. Shikazono, “Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river,” International Journal of Environmental Science & Technology, vol. 7, no. 1, pp. 17–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Gibbs, “The geochemistry of the Amazon River system: part I. The factors that control the salinity and the composition and concentration of the suspended solids,” Geological Society of America Bulletin, vol. 78, no. 10, pp. 1203–1232, 1967. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Gaillardet, B. Dupré, P. Louvat, and C. J. Allègre, “Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers,” Chemical Geology, vol. 159, no. 1-4, pp. 3–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Zhang, Z. F. Zhang, S. M. Liu, Y. Wu, H. Xiong, and H. T. Chen, “Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration?” Global Biogeochemical Cycles, vol. 13, no. 4, pp. 1099–1105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Vörösmarty, P. McIntyre, M. O. Gessner et al., “Global threats to human water security and river biodiversity,” Nature, vol. 467, no. 7315, pp. 555–561, 2010. View at Publisher · View at Google Scholar
  14. N. E. Peters, Evaluation of Environmental Factors Affecting Yields of Major Dissolved Ions of sTreams in the United States, USGPO, 1984.
  15. M. Meybeck, Man and River Interface: Multiple Impacts on Water and Particulates Chemistry Illustrated in the Seine River Basin, Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces, Springer, Berlin, Germany, 1998.
  16. S. Roy, J. Gaillardet, and C. J. Allègre, “Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering,” Geochimica et Cosmochimica Acta, vol. 63, no. 9, pp. 1277–1292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Flintrop, B. Hohlmann, T. Jasper et al., “Anatomy of pollution: rivers of north Rhine-Westphalia, Germany,” American Journal of Science, vol. 296, no. 1, pp. 58–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. ENPHO, Monitoring and Assessment of Water Quality in the Shivapuri Watershed, HMG/FAO, 1997.
  19. DHM, Water Quality Summary 1992–2006, Ministry of Science and Technology, Government of Nepal, 2008.
  20. M. P. Bhatt and W. H. McDowell, “Evolution of chemistry along the Bagmati drainage network in Kathmandu valley,” Water, Air, and Soil Pollution, vol. 185, no. 1, pp. 165–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. R. Kannel, S. Lee, S. R. Kanel, S. P. Khan, and Y.-S. Lee, “Spatial-temporal variation and comparative assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal),” Environmental Monitoring and Assessment, vol. 129, no. 1, pp. 433–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. P. Bhatt and K. H. Gardner, “Variation in DOC and trace metal concentration along the heavily urbanized basin in Kathmandu Valley, Nepal,” Environmental Geology, vol. 58, no. 4, pp. 867–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. P. Bhatt, W. H. McDowell, K. H. Gardner, and J. Hartmann, “Chemistry of the heavily urbanized Bagmati River system in Kathmandu Valley, Nepal: export of organic matter, nutrients, major ions, silica, and metals,” Environmental Earth Sciences, vol. 71, no. 2, pp. 911–922, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. H. G. Dill, B. D. Kharel, V. K. Singh, B. Piya, K. Busch, and M. Geyh, “Sedimentology and paleogeographic evolution of the intermontane Kathmandu basin, Nepal during the Pliocene and Quaternary,” Journal of Asian Earth Sciences, vol. 20, pp. 255–266, 2001. View at Google Scholar
  25. R. Fujii and H. Sakai, “Paleoclimatic changes during the last 2.5 myr recorded in the Kathmandu Basin, Central Nepal Himalayas,” Journal of Asian Earth Sciences, vol. 20, no. 3, pp. 255–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Pradhan, Water quality assessment of the Bagmati River and its tributaries, Kathmandu Valley, Nepal, 1998.
  27. O. M. Shrestha, A. Koirala, J. Hanisch, K. Busch, M. Kerntke, and S. Jäger, “A geo-environmental map for the sustainable development of the Kathmandu Valley, Nepal,” GeoJournal, vol. 49, no. 2, pp. 165–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Kc, Optimizing Water use in Kathmandu valley (ADB TA-3700), Final Draft Report on Groundwater/Hydrogeology in Kathmandu Valley, 2003.
  29. O. Shrestha, A. Koirala, S. Karmacharya et al., Engineering and Environmental Geology Map of the Kathmandu Valley, Department of Mines and Geology, HMG, Kathmandu, Nepal, 1998.
  30. I. Jüttner, S. Sharma, B. M. Dahal, S. J. Ormerod, P. J. Chimonides, and E. J. Cox, “Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India,” Freshwater Biology, vol. 48, no. 11, pp. 2065–2084, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Rimal, “Application of remote sensing and gis, land use/land cover change in Kathmandu Metropolitan City, Nepal,” Journal of Theoretical & Applied Information Technology, vol. 23, no. 2, pp. 80–86, 2011. View at Google Scholar · View at Scopus
  32. R. Paudyal, S. Kang, C. M. Sharma et al., “Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal,” Environmental Earth Sciences, vol. 75, no. 1, article 46, pp. 1–11, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Tripathee, S. Kang, J. Huang et al., “Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal,” Environmental Science and Pollution Research, vol. 21, no. 4, pp. 2677–2687, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Tripathee, S. Kang, C. M. Sharma et al., “Preliminary health risk assessment of potentially toxic metals in surface water of the Himalayan Rivers, Nepal,” Bulletin of Environmental Contamination and Toxicology, 2016. View at Publisher · View at Google Scholar
  35. L. Tripathee, S. Kang, J. Huang et al., “Concentrations of trace elements in wet deposition over the central Himalayas, Nepal,” Atmospheric Environment, vol. 95, pp. 231–238, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Franco-Uría, C. López-Mateo, E. Roca, and M. L. Fernández-Marcos, “Source identification of heavy metals in pastureland by multivariate analysis in NW Spain,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 1008–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Kyllönen, V. Karlsson, and T. Ruoho-Airola, “Trace element deposition and trends during a ten year period in Finland,” Science of the Total Environment, vol. 407, no. 7, pp. 2260–2269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Cong, S. Kang, Y. Zhang, and X. Li, “Atmospheric wet deposition of trace elements to central Tibetan Plateau,” Applied Geochemistry, vol. 25, no. 9, pp. 1415–1421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Sharma, S. Kang, M. Sillanpää et al., “Mercury and selected trace elements from a remote (gosainkunda) and an urban (Phewa) Lake Waters of Nepal,” Water, Air, and Soil Pollution, vol. 226, article no. 6, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Li, S. Kang, and Q. Zhang, “Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport,” Environmental Pollution, vol. 157, no. 8-9, pp. 2261–2265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Reviews of Geophysics, vol. 33, no. 2, pp. 241–265, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Tripathee, S. Kang, D. Rupakheti et al., “Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal,” Environmental Earth Sciences, vol. 75, article 1332, 2016. View at Publisher · View at Google Scholar
  43. G. F. Birch and M. A. Olmos, “Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies,” ICES Journal of Marine Science, vol. 65, no. 8, pp. 1407–1413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Wu, D. Y. Zhao, H. Y. Jia, Y. Zhang, X. X. Zhang, and S. P. Cheng, “Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China,” Bulletin of Environmental Contamination and Toxicology, vol. 82, no. 4, pp. 405–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Muhammad, M. T. Shah, and S. Khan, “Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan,” Microchemical Journal, vol. 98, no. 2, pp. 334–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Song, F. Li, J. Li, and Q. Liu, “Distribution and contamination risk assessment of dissolved trace metals in surface waters in the yellow river delta,” Human and Ecological Risk Assessment, vol. 19, no. 6, pp. 1514–1529, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. USEPA, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312, Office of Superfund Remediation and Technology Innovation USA, July 2004.
  48. US EPA, “Guidelines for carcinogen risk assessment,” Tech. Rep. EPA/630/P-03/001F, Risk Assessment Forum, Washington, DC, USA, 2005. View at Google Scholar
  49. S. C. McCutcheon, J. L. Martin, T. O. Barnwell Jr., and D. Maidment, “Water quality,” in Handbook of Hydrology, pp. 11.11–11.73, McGraw-Hill, New York, NY, USA, 1992. View at Google Scholar
  50. M. Meybeck and R. Helmer, “The quality of rivers: from pristine stage to global pollution,” Global and Planetary Change, vol. 1, no. 4, pp. 283–309, 1989. View at Publisher · View at Google Scholar · View at Scopus
  51. A. T. Herlihy, J. L. Stoddard, and C. B. Johnson, “The relationship between stream chemistry and watershed land cover data in the mid-Atlantic Region, US,” Water, Air, and Soil Pollution, vol. 105, no. 1, pp. 377–386, 1998. View at Publisher · View at Google Scholar
  52. F. Wendland, H. Albert, M. Bach, and R. Schmidt, “Potential nitrate pollution of groundwater in Germany: a supraregional differentiated model,” Environmental Geology, vol. 24, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. U. von Gunten and J. Zobrist, “Biogeochemical changes in groundwater-infiltration systems: column studies,” Geochimica et Cosmochimica Acta, vol. 57, no. 16, pp. 3895–3906, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Collins and A. Jenkins, “The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal,” Journal of Hydrology, vol. 185, no. 1–4, pp. 71–86, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Sörme and R. Lagerkvist, “Sources of heavy metals in urban wastewater in Stockholm,” Science of the Total Environment, vol. 298, no. 1–3, pp. 131–145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Le Pape, S. Ayrault, and C. Quantin, “Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France),” Journal of Hydrology, vol. 472-473, pp. 99–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. WHO, Guidelines for DrinkingWater Quality. Recommendations, World Health Organization, Geneva, Switzerland, 2011.
  58. X. Huang, M. Sillanpää, E. T. Gjessing, S. Peräniemi, and R. D. Vogt, “Environmental impact of mining activities on the surface water quality in Tibet: gyama valley,” Science of the Total Environment, vol. 408, no. 19, pp. 4177–4184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Barałkiewicz and J. Siepak, “Chromium, nickel and cobalt in environmental samples and existing legal norms,” Polish Journal of Environmental Studies, vol. 8, no. 4, pp. 201–208, 1999. View at Google Scholar · View at Scopus
  60. J. P. Wise Sr., R. Payne, S. S. Wise et al., “A global assessment of chromium pollution using sperm whales (Physeter macrocephalus) as an indicator species,” Chemosphere, vol. 75, no. 11, pp. 1461–1467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. H.-F. Sun, Y.-H. Li, Y.-F. Ji, L.-S. Yang, W.-Y. Wang, and H.-R. Li, “Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 2, pp. 308–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. C. K. Adokoh, E. A. Obodai, D. K. Essumang, Y. Serfor-Armah, B. J. B. Nyarko, and A. Asabere-Ameyaw, “Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (Aluminum, Arsenic, Cadmium, and Mercury) in some lagoons and an estuary along the coastal belt of Ghana,” Archives of Environmental Contamination and Toxicology, vol. 61, no. 3, pp. 389–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Adachi and Y. Tainosho, “Characterization of heavy metal particles embedded in tire dust,” Environment International, vol. 30, no. 8, pp. 1009–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. J. O. Nriagu, “A history of global metal pollution,” Science, vol. 272, no. 5259, pp. 223–224, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Zayed, A. Guessous, J. Lambert, G. Carrier, and S. Philippe, “Estimation of annual Mn emissions from MMT source in the Canadian environment and the Mn pollution index in each province,” Science of the Total Environment, vol. 312, no. 1–3, pp. 147–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Kikuchi, T. Furuichi, H. T. Hai, and S. Tanaka, “Assessment of heavy metal pollution in river water of Hanoi, Vietnam using multivariate analyses,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 4, pp. 575–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Z. Garizi, V. Sheikh, and A. Sadoddin, “Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods,” International Journal of Environmental Science & Technology, vol. 8, no. 3, pp. 581–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. J. M. Pacyna, A. Semb, and J. E. Hanssen, “Emission and long-range transport of trace elements in Europe,” Tellus, vol. 36B, no. 3, pp. 163–178, 1984. View at Google Scholar · View at Scopus
  69. Y. Teng, S. Ni, C. Zhang, J. Wang, X. Lin, and Y. Huang, “Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China,” Chinese Journal of Geochemistry, vol. 25, no. 4, pp. 379–385, 2006. View at Google Scholar · View at Scopus
  70. Z. Karim, “Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan,” Bulletin of Environmental Contamination and Toxicology, vol. 86, no. 6, pp. 676–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. E. De Miguel, I. Iribarren, E. Chacón, A. Ordoñez, and S. Charlesworth, “Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain),” Chemosphere, vol. 66, no. 3, pp. 505–513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Q. Meng, J. Zhang, Z. Zhang, and T. Wu, “Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment,” Environmental Science and Pollution Research, pp. 8091–8103, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Li and Q. Zhang, “Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China,” Journal of Hazardous Materials, vol. 181, no. 1–3, pp. 1051–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus