Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2017, Article ID 3162062, 7 pages
https://doi.org/10.1155/2017/3162062
Research Article

Changes in N, K, and Fatty Acid Composition of Black Cumin Seeds Affected by Nitrogen Doses under Supplemental Potassium Application

1Department of Field Crops, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
2Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
3The Ministry of Food, Agriculture and Livestock, Directorate of Cifteler, Eskisehir, Turkey
4Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Meselik Campus, Eskisehir, Turkey
5Department of Chemical Engineering, Faculty of Natural Sciences, Architecture and Engineering, Bursa Technical University, Bursa, Turkey

Correspondence should be addressed to Engin Gokhan Kulan; moc.liamtoh@88_kge

Received 27 January 2017; Revised 14 April 2017; Accepted 23 April 2017; Published 4 June 2017

Academic Editor: Mostafa Khajeh

Copyright © 2017 Zehra Aytac et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. Ipor and L. P. A. Oyen, “Nigella sativa L.,” Plant Resources of South-East Asia, pp. 148–151, 1999. View at Google Scholar
  2. S. Raghavan, Handbook of Spices, Seasonings, and Flavorings, CRC Press, Fla, USA, 2nd edition, 2006.
  3. M. Burits and F. Bucar, “Antioxidant activity of Nigella sativa essential oil,” Phytotherapy Research, vol. 14, no. 5, pp. 323–328, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. L. Mathur, J. Gaur, R. Sharma, and K. R. Haldiya, “Antidiabetic properties of a spice plant Nigella sativa,” Journal of Endocrinology and Metabolism, vol. 1, no. 1, pp. 1–8, 2011. View at Google Scholar
  5. M. Kanter, O. Coskun, and H. Uysal, “The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage,” Archives of Toxicology, vol. 80, no. 4, pp. 217–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. R. Dehkordi and A. F. Kamkhah, “Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension,” Fundamental and Clinical Pharmacology, vol. 22, no. 4, pp. 447–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Al-Ghamdi, “The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa,” Journal of Ethnopharmacology, vol. 76, no. 1, pp. 45–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. M. Hanafy and M. E. Hatem, “Studies on the antimicrobial activity of Nigella sativa seed (black cumin),” Journal of Ethnopharmacology, vol. 34, no. 2-3, pp. 275–278, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Musa, N. Dilsiz, H. Gumushan, G. Ulakoglu, and M. Bitiren, “Antitumor activity of an ethanol extract of Nigella sativa seeds,” Biologia—Section Cellular and Molecular Biology, vol. 59, no. 6, pp. 735–740, 2004. View at Google Scholar · View at Scopus
  10. E. S. Abdel-Aal and R. S. Attiai, “Characterization of black cumin (Nigella sativa) seeds 1-chemical composition and lipids,” Alexandria Science Exchange, vol. 14, pp. 467–467, 1993. View at Google Scholar
  11. S. Cheikh-Rouhou, S. Besbes, B. Hentati, C. Blecker, C. Deroanne, and H. Attia, “Nigella sativa L.: chemical composition and physicochemical characteristics of lipid fraction,” Food Chemistry, vol. 101, no. 2, pp. 673–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Hamrouni-Sellami, M. E. Kchouk, and B. Marzouk, “Lipid and aroma composition of black cumin (Nigella sativa L.) seeds from Tunisia,” Journal of Food Biochemistry, vol. 32, no. 3, pp. 335–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. F. D'Antuono, A. Moretti, and A. F. S. Lovato, “Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L.,” Industrial Crops and Products, vol. 15, no. 1, pp. 59–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Mokhele, X. Zhan, G. Yang, and X. Zhang, “Review: Nitrogen assimilation in crop plants and its affecting factors,” Canadian Journal of Plant Science, vol. 92, no. 3, pp. 399–405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Ashraf, Q. Ali, and Z. Iqbal, “Effect of nitrogen application rate on the content and composition of oil, essential oil and minerals in black cumin (Nigella sativa L.) seeds,” Journal of the Science of Food and Agriculture, vol. 86, no. 6, pp. 871–876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Özgüven and N. Sekeroǧlu, “Agricultural practices for high yield and quality of black cumin (Nigella sativa L.) cultivated in Turkey,” Acta Horticulturae, vol. 756, pp. 329–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Shah, “Influence of nitrogen and phytohormone spray on seed, inorganic protein and oil yields and oil properties of Nigella stiva L.,” Asian Journal of Plant Sciences, vol. 6, no. 2, pp. 364–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Wang, Q. Zheng, Q. Shen, and S. Guo, “The critical role of potassium in plant stress response,” International Journal of Molecular Sciences, vol. 14, no. 4, pp. 7370–7390, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Johnston and G. F. J. Milford, “Potassium and nitrogen interactions in crops,” Potash Development Association, 2012, http://www.pda.org.uk. View at Google Scholar
  20. D. Leikam, “Fertilizing for irrigated corn,” in Guide to Best Management Practices, International Plant Nutrition Institute, Kansas State University, 2008.
  21. G. F. J. Milford and A. E. Johnston, “Potassium and nitrogen interactions in crop production,” in Proceedings of the 615 International Fertilizer Society, pp. 4–14, NY, UK, 2007.
  22. M. S. Brar, S. K. Bijay-Singh, and C. H. Srinivasarao, “Role of potassium nutrition in nitrogen use efficiency in cereals,” Research Findings, no. 29, 2011, http://www.ipipotash.org/en/eifc/2011/29/5/english. View at Google Scholar
  23. J. Timsina, U. Singh, M. Badaruddin, C. Meisner, and M. R. Amin, “Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh,” Field Crops Research, vol. 72, no. 2, pp. 143–161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Rutkowska, D. Pikuła, and W. Stępień, “Nitrogen use efficiency of maize and spring barley under potassium fertilization in long-term field experiment,” Plant Soil and Environment, vol. 60, no. 12, pp. 550–554, 2014. View at Google Scholar · View at Scopus
  25. A. J. Macdonald, D. S. Powlson, P. R. Poulton, and D. S. Jenkinson, “Unused fertiliser nitrogen in arable soils—its contribution to nitrate leaching,” Journal of the Science of Food and Agriculture, vol. 46, no. 4, pp. 407–419, 1989. View at Publisher · View at Google Scholar · View at Scopus
  26. X.-T. Ju, G.-X. Xing, X.-P. Chen et al., “Reducing environmental risk by improving N management in intensive Chinese agricultural systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3041–3046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. K. Broschat, “Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods,” HortScience, vol. 30, no. 1, pp. 74–77, 1995. View at Google Scholar · View at Scopus
  28. M. A. Alfaro, S. C. Jarvis, and P. J. Gregory, “Factors affecting potassium leaching in different soils,” Soil Use and Management, vol. 20, no. 2, pp. 182–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. AOCS, “Rapid determination of oil/fat utilizing high temperature solvent extraction,” AOCS Official Procedure Am 5-04, 1999. View at Google Scholar
  30. IUPAC, Standard Methods for the Analysis of Oils. Fats and Derivatives. Standard Method 2, vol. 2, 507- International Union of Pure and Applied Chemistry, Oxford, UK, 1st supplement to 7th edition, 1992.
  31. P. W. G. Sale and L. C. Campbell, “Yield and composition of soybean seed as a function of potassium supply,” Plant and Soil, vol. 96, no. 3, pp. 317–325, 1986. View at Publisher · View at Google Scholar · View at Scopus
  32. E. V. S. Rao, K. Puttanna, R. S. Ganesha Rao, and S. Ramesh, “Nitrogen and potassium nutrition of French basil (Ocimumbasilicum L.),” ournal of Spices and Aromatic Crops, vol. 16, no. 2, pp. 99–105, 2011. View at Google Scholar
  33. Z. M. Sawan, Hafezb, A. E. Basyony, and A. R. Alkassas, “Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant,” World Journal of Agricultural Sciences, vol. 2, no. 1, pp. 56–65, 2006. View at Publisher · View at Google Scholar
  34. K. Puttanna, E. V. S. P. Rao, R. Singh, and S. Ramesh, “Influence of nitrogen and potassium fertilization on yield and quality of rosemary in relation to harvest number,” Communications in Soil Science and Plant Analysis, vol. 41, no. 2, pp. 190–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. D. Beaton, “Response to potassium: yield and economics,” in Potassium for Agriculture, Potash and Phosphate Institute, pp. 67–108, Atlanta, GA, USA, 1980. View at Google Scholar
  36. F. S and El-Nakhlawy., “Response of safflower to different levels of nitrogen, phosphorus, and potassium,” Acta Agronomica Hungarica, vol. 40, no. 1-2, pp. 87–92, 1991. View at Google Scholar
  37. J. D. Scheiner, F. H. Gutiérrez-Boem, and R. S. Lavado, “Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas,” Argentina European Journal of Agronomy, vol. 17, no. 1, pp. 73–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. F. Brennan and M. D. A. Bolland, “Influence of potassium and nitrogen fertiliser on yield, oil and protein concentration of canola (Brassica napus L.) grain harvested in south-western Australia,” Australian Journal of Experimental Agriculture, vol. 47, no. 8, pp. 976–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. M. Gaydou and J. Arrivets, “Effects of phosphorus, potassium, dolomite, and nitrogen fertilization on the quality of soybean. Yields, proteins, and lipids,” Journal of Agricultural and Food Chemistry, vol. 31, no. 4, pp. 765–769, 1983. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Al-Naqeeb, M. Ismail, and A. S. Al-Zubairi, “Fatty acid profile, α-tocopherol content and total antioxidant activity of oil extracted from Nigella sativa seeds,” International Journal of Pharmacology, vol. 5, no. 4, pp. 244–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Bourgou, I. Bettaieb, M. Saidani, and B. Marzouk, “Fatty acids, essential oil, and phenolics modifications of black cumin fruit under nacl stress conditions,” Journal of Agricultural and Food Chemistry, vol. 58, no. 23, pp. 12399–12406, 2010. View at Publisher · View at Google Scholar · View at Scopus