Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2017, Article ID 4035626, 7 pages
https://doi.org/10.1155/2017/4035626
Review Article

Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus

1Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Correspondence should be addressed to Siew Hua Gan; ym.msu@naghs and Md. Ibrahim Khalil; moc.liamg@lilahkimrd

Received 29 March 2017; Revised 8 June 2017; Accepted 14 June 2017; Published 12 July 2017

Academic Editor: Sevgi Kolaylı

Copyright © 2017 Md. Sakib Hossen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Since diabetes mellitus (DM) is one of the most common and serious endocrine metabolic disorders, it is important to elucidate novel antidiabetic therapeutic agents from various sources, including natural products. Bee venom (BV) is a complex mixture of proteins, peptides, and low molecular components, and melittin is the main constituent. Melittin is a peptide consisting of 26 amino acids with the sequence GIGAVLKVLTTGLPALISWIKRKRQQ. It has several important biological effects and has a relatively low toxicity. Recent studies using animal models have confirmed that melittin has significant glucose and lipid lowering activities by acting on several mechanistic pathways. The main antidiabetic activity of melittin is increasing insulin secretion via depolarization of pancreatic β-cells. Other possible mechanisms may involve stimulation of phospholipase A2, increase of glucose uptake, improving lipid profile, and/or reduction of inflammation. This review summarizes the various sources, proteomics, biological roles, adverse effects, and medical applications of melittin and its mechanism of action in combating DM.