Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2018, Article ID 1295184, 8 pages
https://doi.org/10.1155/2018/1295184
Research Article

Influence of Yeast β-Glucan on Cookies Sensory Characteristics and Bioactivities

1Department of Food Science & Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
2Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan

Correspondence should be addressed to Muhammad Nasir; kp.ude.savu@risan

Received 3 August 2017; Accepted 21 January 2018; Published 12 March 2018

Academic Editor: Sevgi Kolaylı

Copyright © 2018 Umar Bacha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. O. Li and A. R. Komarek, “Dietary fibre basics: Health, nutrition, analysis, and applications,” Food Quality and Safety, vol. 1, no. 1, pp. 47–59, 2017. View at Publisher · View at Google Scholar
  2. M. El-Salhy, S. O. Ystad, T. Mazzawi, and D. Gundersen, “Dietary fiber in irritable bowel syndrome (Review),” International Journal of Molecular Medicine, vol. 40, no. 3, pp. 607–613, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Han, S. Ma, L. Li, X.-X. Wang, and X.-L. Zheng, “Application and development prospects of dietary fibers in flour products,” Journal of Chemistry, vol. 2017, Article ID 2163218, 8 pages, 2017. View at Publisher · View at Google Scholar · View at Scopus
  4. E. S. Eshak, H. Iso, C. Date et al., “Dietary fiber intake is associated with reduced risk of mortality from cardiovascular disease among Japanese men and women,” Journal of Nutrition, vol. 140, no. 8, pp. 1445–1453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-Y. Yang, S. Ma, X.-X. Wang, and X.-L. Zheng, “Modification and Application of Dietary Fiber in Foods,” Journal of Chemistry, vol. 2017, Article ID 9340427, 2017. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Wei, Y. Liu, X. Lin, Y. Fang, J. Cui, and J. Wan, “Dietary fiber intake and risk of metabolic syndrome: A meta-analysis of observational studies,” Clinical Nutrition, 2017. View at Publisher · View at Google Scholar
  7. D. Dhingra, M. Michael, H. Rajput, and R. T. Patil, “Dietary fibre in foods: a review,” Journal of Food Science and Technology, vol. 49, no. 3, pp. 255–266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Frost, K. Adhikari, and D. S. Lewis, “Effect of barley flour on the physical and sensory characteristics of chocolate chip cookies,” Journal of Food Science and Technology, vol. 48, no. 5, pp. 569–576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. V. M. Chappalwar, D. Peter, H. Bobde, and S. M. John, “Quality characteristics of cookies prepared from oats and finger millet based composite flour,” Engineering Science and Technology: An International Journal, vol. 3, pp. 667–683, 2013. View at Google Scholar
  10. S. Bell, V. M. Goldman, B. R. Bistrian, A. H. Arnold, G. Ostroff, and R. A. Forse, “Effect of β-glucan from oats and yeast on serum lipids,” Critical Reviews in Food Science and Nutrition, vol. 39, no. 2, pp. 189–202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. V. A. Solah, B. O’Mara-Wallace, X. Meng et al., “Consumption of the soluble dietary fibre complex polyglycopleX® reduces glycaemia and increases satiety of a standard meal postprandially,” Nutrients, vol. 8, no. 5, article no. 268, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. C. J. Rebello, Y.-F. Chu, W. D. Johnson et al., “The role of meal viscosity and oat β-glucan characteristics in human appetite control: A randomized crossover trial,” Nutrition Journal , vol. 13, no. 1, article no. 49, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. AACC, “Approved methods of the american association of cereal chemists,” in American Association of Cereal Chemists, Inc St Paul, Minnesota, USA, 2000. View at Google Scholar
  14. AOAC (The Association of Official Analytical Chemist), 2006, The official methods of analysis of AOAC international, 18th ed. The Assoc. Official Ana. Chem. Arlington, USA.
  15. M. C. Meilgaard, B. T. Carr, and G. V. Civille, Sensory evaluation techniques, CRC press, 2006.
  16. U. Bacha, M. Nasir, A. Khalique, and A. A. Anjum, “Sensory and physical attributes of sugar snaps cookies as a source of protein,” Carpathian Journal of Food Science and Technology, vol. 5, no. 1-2, pp. 45–51, 2013. View at Google Scholar · View at Scopus
  17. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Mladěnka, K. MacÁková, T. Filipský et al., “In vitro analysis of iron chelating activity of flavonoids,” Journal of Inorganic Biochemistry, vol. 105, no. 5, pp. 693–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. R. Kirk and R. Sawyer, Pearson’s Composition and Analysis of Foods, Addison Wesley Longman Ltd. Harlow, England, 9th edition, 1999.
  21. J. O. Uzuegbe and O. S. Eke, Course in food microbiology, pp 60-70, Osprey publish centre, Owerri, Nigeria, 2001.
  22. K. Argyri, A. Athanasatou, M. Bouga, and M. Kapsokefalou, “The potential of an in vitro digestion method for predicting glycemic response of foods and meals,” Nutrients, vol. 8, no. 4, article no. 42, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Magaletta, S. N. DiCataldo, D. Liu, H. L. Li, R. P. Borwankar, and M. C. Martini, “In vitro method for predicting glycemic index of foods using simulated digestion and an artificial neural network,” Cereal Chemistry, vol. 87, no. 4, pp. 363–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Abu-Ghoush, T. J. Herald, F. Dowell, F. Xie, F. M. Aramouni, and R. Madl, “Effect of preservatives addition on the shelf-life extensions and quality of flat bread as determined by near-infrared spectroscopy and texture analysis,” International Journal of Food Science & Technology, vol. 43, no. 2, pp. 357–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Narayana and M. S. R. Narasinga, “Functional properties of raw and heat processed winged bean flour,” Journal of Food Science, vol. 42, pp. 534–538, 1982. View at Google Scholar
  26. R. G. D. Steel, J. H. Torrie, and D. Dickey, Principles and Procedures of Statistics. A Biometrical Approach, McGraw Hills Book Co. Inc New York, 3rd edition, 1977.
  27. D. B. Duncan, “Multiple range and multiple F tests,” Biometrics, vol. 11, pp. 1–42, 1955. View at Publisher · View at Google Scholar · View at MathSciNet
  28. A. A. Mohammed, E. M. Babiker, A. G. Khalid, N. A. Mohammed, and E. K. Khadir, “Nutritional evaluation and sensory characteristics of biscuits flour supplemented with difference levels of whey protein concentrates,” International Journal of Food Processing Technology, 2016. View at Google Scholar
  29. G. Gizachew, B. Geremew, and A. Solomon, “Effect of cassava (manihot esculenta crantz) variety, drying method and blending ratio on the proximate composition and sensory properties of cassava-wheat composite bread,” European Journal of Food Science and Technology, vol. 3, pp. 41–54, 2015. View at Google Scholar
  30. J. L. Sidel and H. Stone, “The role of sensory evaluation in the food industry,” Food Quality and Preference, vol. 4, no. 1-2, pp. 65–73, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Saeed, M. M. Ahmad, H. Kausar, S. Parveen, S. Masih, and A. Salam, “Effect of sweet potato flour on quality of cookies,” Journal of Agriculture Research, vol. 50, pp. 525–536, 2012 (Chinese). View at Google Scholar
  32. A. Din, F. M. Anjum, T. Zahoor, and H. Nawaz, “Extraction and utilization of barley β-glucan for the preparation of functional beverage,” International Journal of Agriculture and Biology, vol. 11, no. 6, pp. 737–740, 2009. View at Google Scholar · View at Scopus
  33. D. A. J. M. Kerckhoffs, G. Hornstra, and R. P. Mensink, “Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies,” American Journal of Clinical Nutrition, vol. 78, no. 2, pp. 221–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Siwela, J. R. N. Taylor, and G. Duodu, “Phenolic content, antioxidant and sensory acceptability of wheat-finger millet composite cookies,” Journal of Food Science and Technology, vol. 2, pp. 52–55, 2009. View at Google Scholar
  35. A. Lazaridou, A. Marinopoulou, N. P. Matsoukas, and C. G. Biliaderis, “Impact of flour particle size and autoclaving on β-glucan physicochemical properties and starch digestibility of barley rusks as assessed by in vitro assays,” Bioactive Carbohydrates and Dietary Fibre, vol. 4, no. 1, pp. 58–73, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Finocchiaro, B. Ferrari, A. Gianinetti et al., “Effects of barley β-glucan-enriched flour fractions on the glycaemic index of bread,” International Journal of Food Sciences and Nutrition, vol. 63, no. 1, pp. 23–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Cavallero, S. Empilli, F. Brighenti, and A. M. Stanca, “High (1 → 3, 1 → 4)-β-glucan barley fractions in bread making and their effects on human glycemic response,” Journal of Cereal Science, vol. 36, no. 1, pp. 59–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Tosh, Y. Brummer, T. M. S. Wolever, and P. J. Wood, “Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan,” Cereal Chemistry, vol. 85, no. 2, pp. 211–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Gelroth and S. Ranhotra, “Food uses of fibre in,” in Handbook of dietary fibre, SS. Cho and ML. Dreher, Eds., pp. 435–449, Marcel Dekker, New York, USA, 2001. View at Google Scholar
  40. P.-J. Tsai, T.-Y. Yu, S.-H. Chen, C.-C. Liu, and Y.-F. Sun, “Interactive role of color and antioxidant capacity in caramels,” Food Research International, vol. 42, no. 3, pp. 380–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Haghshenas, H. Hosseini, K. Nayebzadeh, B. S. Kakesh, M. Mahmoudzadeh, and R. K. Fonood, “Effect of beta glucan and carboxymethyl cellulose on lipid oxidation and fatty acid composition of pre-cooked shrimp nugget during storage,” LWT- Food Science and Technology, vol. 62, no. 2, pp. 1192–1197, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Shakerardekani, R. Karim, H. M. Ghazali, and N. L. Chin, “Textural, rheological and sensory properties and oxidative stability of nut spreads-a review,” International Journal of Molecular Sciences, vol. 14, no. 2, pp. 4223–4241, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. J. P. Smith, D. P. Daifas, W. El-Khoury, J. Koukoutsis, and A. El-Khoury, “Shelf life and safety concerns of bakery products - A review,” Critical Reviews in Food Science and Nutrition, vol. 44, no. 1, pp. 19–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. A. Mossel and P. Van Netten, “Microbiological reference values for foods: a European perspective,” Association of Official Analytical Chemists, vol. 74, no. 2, pp. 420–432, 1990. View at Google Scholar · View at Scopus
  45. T. L. Jeng, Y. C. Chiang, C. C. Lai et al., “Sweet potato leaf extract inhibits the simulated in vitro gastrointestinal digestion of native starch,” Journal of Food and Drug Analysis, vol. 23, no. 3, pp. 399–406, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. G. E. Inglett, D. Chen, and S. Liu, “Physical properties of sugar cookies containing chia-oat composites,” Journal of the Science of Food and Agriculture, vol. 94, no. 15, pp. 3226–3233, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Kamboj, P. Guha, and S. Mishra, “Determination of chemical properties of desi chickpea flour (besan) using near infrared spectroscopy and chemometrics,” International Journal Tropical Agriculture, vol. 33, pp. 3467–3470, 2015. View at Google Scholar
  48. M. Havrlentová, Z. Petruláková, A. Burgárová et al., “Properties of cereal β-D-glucan hydrocolloids and their effect on bread and ketchup parameters,” Polish Journal of Food and Nutrition Sciences, vol. 63, no. 2, pp. 79–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. S. P. Cauvain, Technology of Breadmaking, Britain, pp. 285–286, Thomson Publishing, 2007.
  50. C. Balagopalan, G. Padmaja, S. K. Nanda, and S. N. Moorthy, Cassva in food, feed and industry, pp. 126–127, CRC Press, Boca Raton, FL, USA, 2010.
  51. S. Chandra, S. Singh, and D. Kumari, “Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits,” Journal of Food Science and Technology, vol. 52, no. 6, pp. 3681–3688, 2015. View at Publisher · View at Google Scholar · View at Scopus