Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2012, Article ID 184783, 14 pages
http://dx.doi.org/10.1155/2012/184783
Research Article

Selective Forwarding Attacks against Data and ACK Flows in Network Coding and Countermeasures

1CITI laboratory, INSA-Lyon, INRIA, Université de Lyon, 69621 Lyon, France
2Department of Computer Science and Technology, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China

Received 27 April 2012; Revised 30 July 2012; Accepted 27 September 2012

Academic Editor: Gildas Avoine

Copyright © 2012 Yuanyuan Zhang and Marine Minier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Network coding has attracted the attention of many researchers in security and cryptography. In this paper, a well-known attack selective forwarding attack will be studied in network coding systems. While most of the works have been dedicated to the countermeasures against pollution attacks where an attacker modifies intermediate packets, only few works concern selective forwarding attacks on data or acknowledgment (ACK) packets; those last ones are required in network coding. However, selective forwarding attacks stay a real threat in resource constraint networks such as wireless sensor networks, especially when selective forwarding attacks target the acknowledgment (ACK) messages, referred to as flooding attack. In the latter model, an adversary can easily create congestion in the network and exhaust all the resources available. The degradation of the QoS (delay, energy) goes beyond the capabilities of cryptographic solutions. In this paper, we first simulate and analyze the effects of selective forwarding attacks on both data flows and ACK flows. We then investigate the security capabilities of multipath acknowledgment in more details than in our original proposal (Zhang et al., 2011).