Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2013, Article ID 148015, 11 pages
http://dx.doi.org/10.1155/2013/148015
Review Article

Response Time Analysis of Messages in Controller Area Network: A Review

1School of Electronics Engineering, VIT University, Vellore, Tamilnadu 632014, India
2Department of Electrical Engineering, IISc, Bangalore, Karnataka 560012, India

Received 29 August 2012; Accepted 12 December 2012

Academic Editor: Zhiyong Xu

Copyright © 2013 Gerardine Immaculate Mary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area network (CAN) schedulability analysis: refuted, revisited and revised,” Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. W. Tindell, H. Hansson, and A. J. Wellings, “Analysing real-time communications: controller area network (CAN),” in Proceedings of the 15th IEEE Real-Time Systems Symposium (RTSS '94), pp. 259–263, IEEE Computer Society Press, 1994.
  3. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-time systems,” Microprocessing and Microprogramming, vol. 40, no. 2-3, pp. 117–134, 1994. View at Google Scholar · View at Scopus
  4. K. Tindell and A. Burns, “Guaranteeing message latencies on control area network (can),” in Proceedings of the 1st International CAN Conference, Citeseer, 1994.
  5. K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area network (can) message response times,” Control Engineering Practice, vol. 3, no. 8, pp. 1163–1169, 1995. View at Google Scholar · View at Scopus
  6. T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN response-time analysis jitter by message manipulation,” in Proceedings of the 8th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS '02), pp. 197–206, September 2002.
  7. T. Nolte, H. Hansson, and C. Norstrom, “Probabilistic worst-case response-time analysis for the controller area network,” in Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS '03), pp. 200–207, May 2003.
  8. S. Punnekkat, H. Hansson, and C. Norstrom, “Response time analysis under errors for CAN,” in Proceedings of the 6th IEEE Real-Time Technology and Applications Symposium (RTAS '00), pp. 258–265, June 2000. View at Scopus
  9. H. Hansson, C. Norström, and S. Punnekkat, “Integrating reliability and timing analysis of CAN-based systems,” in Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS '00), IEEE Industrial Electronics Society, Porto, Portugal, September 2000.
  10. H. Hansson, C. Norström, and S. Punnekkat, “Reliability modelling of time-critical distributed systems,” in Proceedings of the 6th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT '00), M. Joseph, Ed., vol. 1926 of Lecture Notes in Computer Science, Springer, Pune, India, September 2000.
  11. T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using bit-stuffing distributions in CAN analysis,” in Proceedings of the IEEE/IEE Real-Time Embedded Systems Workshop (RTES '01), December 2001.
  12. K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6, no. 2, pp. 133–151, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS '90), pp. 201–209, IEEE Computer Society Press, December 1990.
  14. M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Fixed priority scheduling periodic tasks with varying execution priority,” in Proceedings of the 12th IEEE Real-Time Systems Symposium (RTSS '91), pp. 116–128, IEEE Computer Society Press, December 1991. View at Scopus
  15. L. George, N. Rivierre, and M. Spuri, “Pre-emptive and non-pre-emptive real-time uni-processor scheduling,” Tech. Rep. 2966, Institut National de Recherche et Informatique et en Automatique, Versailles, France, 1996. View at Google Scholar
  16. R. J. Bril, “Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred pre-emption is too optimistic,” CS-Report 06-05, Technische Universiteit, Eindhoven, The Netherlands, 2006. View at Google Scholar
  17. A. Burns, “Pre-emptive priority based scheduling: an appropriate engineering approach,” in Advances in Real-Time Systems, S. Son, Ed., pp. 225–248, Prentice-Hall, 1994. View at Google Scholar
  18. Y. Wang and M. Saksena, “Scheduling fixed priority tasks with pre-emption threshold,” in Proceedings of the 6th International Workshop on Real-Time Computing Systems and Applications (RTCSA '99), pp. 328–335, December 1999.
  19. J. Regehr, “Scheduling tasks with mixed pre-emption relations for robustness to timing faults,” in Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS '02), pp. 315–326, IEEE Computer Society Press, December 2002.
  20. R. J. Bril, J. J. Lukkien, R. I. Davis, and A. Burns, “Message response time analysis for ideal controller area network (CAN) refuted,” CS-Report 06-19, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2006. View at Google Scholar
  21. R. J. Bril, J. J. Lukkien, R. I. Davis, and A. Burns, “Message response time analysis for ideal controller area network (CAN) refuted,” in Proceedings of the 5th International Workshop on Real-Time Networks (RTN '06), 2006.
  22. International Standards Organisation, ISO 11898. Road Vehicles—Interchange of Digital Information—Controller Area Network (CAN) for High-Speed Communication, 1993.
  23. A. Cheng, L. Zhang, and T. Zheng, “The schedulability analysis and software design for networked control systems of vehicle based on CAN,” in Proceedings of the IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE '11), vol. 2, pp. 274–278, Wuhan, China, August 2011.
  24. P. Axer, M. Sebastian, and R. Ernst, “Probabilistic response time bound for CAN messages with arbitrary deadlines,” in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE '12), pp. 1114–1117, Dresden, Germany, March 2012.
  25. N. Navet, Y. Q. Song, and F. Simonot, “Worst-case deadline failure probability in real-time applications distributed over controller area network,” Journal of Systems Architecture, vol. 46, no. 7, pp. 607–617, 2000. View at Google Scholar · View at Scopus
  26. I. Broster, A. Burns, and G. Rodriguez-Navas, “Probabilistic analysis of can with faults,” in Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS '02), pp. 269–278, 2002.
  27. M. Sebastian and R. Ernst, “Reliability analysis of single bus communication with real-time requirements,” in Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC '09), pp. 3–10, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Broster and A. Burns, “Comparing real-time communication under electromagnetic interference,” in Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS '04), pp. 45–52, July 2004. View at Scopus
  29. M. Grenier, L. Havet, and N. Navet, “Pushing the limits of CAN—scheduling frames with offsets provides a major performance boost,” in Proceedings of the 4th European Congress on Embedded Real Time Software, Toulouse, France, 2008.
  30. L. Du and G. Xu, “Worst case response time analysis for CAN messages with offsets,” in Proceedings of the IEEE International Conference on Vehicular Electronics and Safety (ICVES '09), pp. 41–45, Pune, India, November 2009. View at Publisher · View at Google Scholar · View at Scopus