Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2017, Article ID 1837210, 8 pages
https://doi.org/10.1155/2017/1837210
Research Article

Grassmannian Constellation Based on Antipodal Points and Orthogonal Design and Its Simplified Detecting Algorithm

1School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, China
2Department of Electronics and Information, Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, Guangdong 518057, China
3School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Correspondence should be addressed to Li Peng; nc.ude.tsuh@ilgnep

Received 29 September 2016; Revised 13 December 2016; Accepted 15 February 2017; Published 3 April 2017

Academic Editor: Lixin Gao

Copyright © 2017 Li Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 543–564, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. L. Zheng and D. N. Tse, “Communication on the Grassmann manifold: a geometric approach to the noncoherent multiple-antenna channel,” IEEE Transactions on Information Theory, vol. 48, no. 2, pp. 359–383, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. R. H. Gohary and T. N. Davidson, “Noncoherent MIMO communication: Grassmannian constellations and efficient detection,” IEEE Transactions on Information Theory, vol. 55, no. 3, pp. 1176–1205, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary constellations for uncoded and trellis-coded noncoherent space-time systems,” IEEE Transactions on Information Theory, vol. 50, no. 6, pp. 1319–1327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Zhao, G. Leus, and G. B. Giannakis, “Algebraic design of unitary space-time constellations,” in Proceedings of the International Conference on Communications (ICC '03), pp. 3180–3184, May 2003. View at Scopus
  6. J. Kim, K. Cheun, and S. Choi, “Unitary space-time constellations based on quasi-orthogonal sequences,” IEEE Transactions on Communications, vol. 58, no. 1, pp. 35–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Tarokh and I.-M. Kim, “Existence and construction of noncoherent unitary space-time codes,” IEEE Transactions on Information Theory, vol. 48, no. 12, pp. 3112–3117, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. Y. Jing and B. Hassibi, “Unitary space-time modulation via Cayley transform,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp. 2891–2904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Conway, R. H. Hardin, and N. J. Sloane, “Packing lines, planes, etc.: packings in Grassmannian spaces,” Experimental Mathematics, vol. 5, no. 2, pp. 139–159, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. L. Peng and D. Fu, “Antipodal demodulation method and antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication,” Patent Number US 8, 879, 660 B1, November 2014.