Journal of Control Science and Engineering
 Journal metrics
Acceptance rate15%
Submission to final decision59 days
Acceptance to publication29 days
CiteScore1.900
Impact Factor-

Fresh Tea Sprouts Detection via Image Enhancement and Fusion SSD

Read the full article

 Journal profile

Journal of Control Science and Engineering publishes research investigating the design, simulation and modelling, implementation, and analysis of methods and technologies for control systems and applications.

 Editor spotlight

Journal of Control Science and Engineering maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed

Three-axis air-bearing test bed is important semiphysical simulation equipment for spacecraft, which can simulate spacecraft attitude control, rendezvous, and docking with high confidence. When the three-axis air-bearing table is maneuvering at a large angle, if it is only controlled by the flywheel, it will cause the problems of slow maneuvering speed and high energy consumption, and when the external interference torque becomes large, the control accuracy will decline. A combined actuator including flywheel, air-conditioner thruster, and automatic balancing device is designed, and a hierarchical saturation PD control algorithm is proposed to improve the control accuracy and anti-interference ability of the three-axis air-bearing test bed. Finally, the mathematical simulation of the proposed control algorithm is carried out, and the physical verification is carried out on the three-axis air-bearing test bed. The results show that the control algorithm has higher control accuracy than the traditional control algorithm, and the control accuracy is better than and basically meets the attitude control requirements of the ground simulation in-orbit satellite.

Research Article

A Service Recommendation Method Based on Requirements for the Cloud Environment

In the cloud computing environment, there are huge amounts of functionally similar cloud services. Additionally, user requirements can change. Therefore, it is difficult to recommend services that meet users’ requirements. To overcome the problems, a service recommendation method based on requirements is proposed. First, we form user communities by clustering to reduce the recommended range. Second, we use the reported QoS (Quality of Service) values and the evaluated QoS values to predict the QoS requirements of users. Third, based on the requirements, the matching degree of users to services is obtained. Finally, based on the similarity between the target user and the user’s neighbors and the difference in their matching degree of service and the ratings of services by the neighbors, we can obtain a list of service recommendations for the target user. Compared to the traditional collaborative filtering method and the deviation-based method, our method improves the recommendation accuracy without lowering the efficiency.

Research Article

Soft Sensor Modeling Method Based on SPA-GWO-SVR for Marine Protease Fermentation Process

The marine protease fermentation process is a highly nonlinear, time-varying, multivariable, and strongly coupled complex biochemical reaction process. Due to the growth and reproduction of living organisms, the internal mechanism is very complicated. Some key variables (such as cell concentration, substrate concentration, and enzyme activity) that directly reflect the fermentation process's quality are difficult to measure in real-time by traditional measurement methods. A soft sensor model based on a support vector regression (SVR) is proposed in this paper to resolve this problem. To further improve the model's prediction accuracy, the grey wolf optimization (GWO) algorithm is used to optimize the critical parameters (kernel function width σ, penalty factor c, and insensitivity coefficient ε) of the SVR model. To study the influence of selecting auxiliary variables on soft sensor modeling, the successive projection algorithm (SPA) is used to determine the characteristic variables and compare them with grey relation analysis (GRA) algorithm. Finally, the Excel spreadsheet data was called by MATLAB programming, and the established SPA-GWO-SVR soft sensor model predicted crucial biological variables. The simulation results show that the SPA-GWO-SVR model has higher prediction accuracy and generalization ability than the traditional SPA-SVR model. The real-time monitoring was processed by MATLAB software for the marine protease fermentation process, which met the requirements of optimal control of the marine protease fermentation process.

Research Article

Parameter Optimization of Ultrafine Comminution Based on Analytic Hierarchy Process: Fuzzy Comprehensive Evaluation

This paper proposes a fuzzy comprehensive evaluation of ultrafine powders, namely, yield and quality value-based feature selection. Three indicators reflecting product yield and quality were selected to construct a simple and practical fuzzy comprehensive evaluation protocol. The weight set of the indices and the fuzzy evaluation set were calculated based on the analytic hierarchy process (AHP) method. The fuzzy comprehensive evaluation value was worked out as the only comprehensive index for the evaluation of product. The best ultrafine comminution condition will be established through the comparison of the fuzzy comprehensive evaluation values. Single-factor experiments and orthogonal experiments of the main influencing factors of ultrafine comminution were conducted. It was concluded that the importance of each factor is sequentially the concentration, specific surface area (SSA) of the media, and percentage of critical speed (PCS). Moreover, the concentration and SSA of the media were equally important. Ultrafine comminution by ball mill had the best overall performance under the PCS of 85%, the SSA of the media of 0.24 m2/kg, and the concentration of 75%.

Research Article

Shadow Separation of Pavement Images Based on Morphological Component Analysis

The shadow of pavement images will affect the accuracy of road crack recognition and increase the rate of error detection. A shadow separation algorithm based on morphological component analysis (MCA) is proposed herein to solve the shadow problem of road imaging. The main assumption of MCA is that the image geometric structure and texture structure components are sparse within a class under a specific base or overcomplete dictionary, while the base or overcomplete dictionaries of each sparse representation of morphological components are incoherent. Thereafter, the corresponding image signal is transformed according to the dictionary to obtain the sparse representation coefficients of each part of the information, and the coefficients are shrunk by soft thresholding to obtain new coefficients. Experimental results show the effectiveness of the shadow separation method proposed in this paper.

Research Article

Path Planning of Continuum Robot Based on Path Fitting

The Continuum Robot has a multiredundant dof structure, which is extremely advantageous in the unstructured environment, and can complete such tasks as aircraft fuel tank inspection. However, due to its complex kinematics and coupling of joint motion, its motion path planning is also a challenging task. In this paper, a path planning method for Continuum Robot based on an equal curvature model in an aircraft fuel tank environment is proposed. Considering the complexity of calculation and the structural characteristics of Continuum Robot, a feasible obstacle avoidance discrete path is obtained by using the improved RRT algorithm. Then, joint fitting is performed on the existing discrete path according to the kinematic model of Continuum Robot, joint obstacle avoidance was conducted in the process of fitting, and finally, a motion path suitable for the Continuum Robot was selected. A reasonable experiment is designed based on MATLAB, and simulation and analysis results demonstrate excellent performance of this method and feasibility of path planning.

Journal of Control Science and Engineering
 Journal metrics
Acceptance rate15%
Submission to final decision59 days
Acceptance to publication29 days
CiteScore1.900
Impact Factor-
 Submit