Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2012, Article ID 269346, 9 pages
http://dx.doi.org/10.1155/2012/269346
Research Article

Adaptive Control for Nonlinear Systems with Time-Varying Control Gain

1Programa de Ingeniería Ambiental, Facultad de Ingeniería y Arquitectura, Universidad Católica de Manizales, Carrena 23 No. 60-30, Manizales 170002, Colombia
2Departamento de Ingeniería Eléctrica, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Electrónica y Computación, Percepción y Control Inteligente, Bloque Q, Campus La Nubia, Manizales 170003, Colombia

Received 21 November 2011; Accepted 11 April 2012

Academic Editor: Chengyu Cao

Copyright © 2012 Alejandro Rincon and Fabiola Angulo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Narendra and K. George, “Adaptive control of simple nonlinear systems using multiple models,” in Proceedings of the American Control Conference (ACC '02), pp. 1779–1784, Anchorage, AK, USA, May 2002. View at Scopus
  2. I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241–1253, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive control with locally weighted statistical learning,” Neural Networks, vol. 18, no. 1, pp. 71–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. A. Yousef and M. A. Wahba, “Adaptive fuzzy mimo control of induction motors,” Expert Systems with Applications, vol. 36, no. 3, pp. 4171–4175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. C. Huang and Y. S. Kuo, “Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, vol. 40, no. 11, pp. 1939–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Chen, C. M. Lin, and T. Y. Chen, “Intelligent adaptive control for MIMO uncertain nonlinear systems,” Expert Systems with Applications, vol. 35, no. 3, pp. 865–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Feng, C. Y. Su, H. Hong, and S. S. Ge, “Robust adaptive control for a class of nonlinear systems with generalized Prandtl-Ishlinskii hysteresis,” in Proceedings of the 46th IEEE Conference on Decision and Control 2007 (CDC '07), pp. 4833–4838, New Orleans, Calif, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple models,” IEEE Transactions on Automatic Control, vol. 42, no. 2, pp. 171–187, 1997. View at Google Scholar · View at Scopus
  10. S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” IEEE Transactions on Automatic Control, vol. 48, no. 8, pp. 1463–1469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems,” Automatica, vol. 45, no. 2, pp. 532–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Y. Su, Y. Feng, H. Hong, and X. Chen, “Adaptive control of system involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii modelling approach,” International Journal of Control, vol. 82, no. 10, pp. 1786–1793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Feng, C. Y. Su, and H. Hong, “Universal construction of robust adaptive control laws for a class of nonlinear systems preceded by generalized Prandtl-Ishlinskii representation,” in Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA '08), pp. 153–158, Singapore, Singapore, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1175–1183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Y. Lee, “Adaptive control of a class of nonlinear systems using multiple parameter models,” International Journal of Control, Automation and Systems, vol. 4, no. 4, pp. 428–437, 2006. View at Google Scholar · View at Scopus
  16. S. Labiod and T. M. Guerra, “Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems,” Fuzzy Sets and Systems, vol. 158, no. 10, pp. 1126–1137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Spooner, M. Maggiore, R. Ordóñez, and K. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques, John Wiley & Sons, New York, NY, USA, 2002.
  18. J. J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, USA, 1991.
  19. B. B. Peterson and K. Narendra, “Bounded error adaptive control,” IEEE Transactions on Automatic Control, vol. AC-27, no. 6, pp. 1161–1168, 1982. View at Google Scholar · View at Scopus
  20. K. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley Publishing Company Inc, Reading, Mass, USA, 1995.
  21. X. S. Wang, C. Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear systems with unknown dead-zone,” Automatica, vol. 40, no. 3, pp. 407–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wu, D. Pu, and H. Ding, “Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors,” Mechatronics, vol. 17, no. 4-5, pp. 263–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall PTR, Upper Saddle River, NJ, USA, 1996.
  24. J. Zhou and Y. Wang, “Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor,” Control Engineering Practice, vol. 13, no. 10, pp. 1259–1269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Liu, W. Liu, and D. A. Cartes, “Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors,” Engineering Applications of Artificial Intelligence, vol. 21, no. 7, pp. 1092–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Morel, X. Lin-Shi, J. M. Rétif, and B. Allard, “A predictive current control applied to a permanent magnet synchronous machine, comparison with a classical direct torque control,” Electric Power Systems Research, vol. 78, no. 8, pp. 1437–1447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Jing, C. Yu, and G. Chen, “Complex dynamics in a permanent-magnet synchronous motor model,” Chaos, Solitons and Fractals, vol. 22, no. 4, pp. 831–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Harb, “Nonlinear chaos control in a permanent magnet reluctance machine,” Chaos, Solitons and Fractals, vol. 19, no. 5, pp. 1217–1224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Pillay and R. Krishnan, “Control characteristics and speed controller design for a high performance permanent magnet synchronous motor drive,” IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 151–159, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, NY, USA, 3rd edition, 2004.