Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2012, Article ID 517157, 12 pages
Research Article

State Feedback Stabilization for Neutral-Type Neural Networks with Time-Varying Discrete and Unbounded Distributed Delays

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

Received 19 December 2011; Revised 27 March 2012; Accepted 21 April 2012

Academic Editor: Onur Toker

Copyright © 2012 Yantao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The problem of stabilization for a class of neutral-type neural networks with discrete and unbounded distributed delays is investigated. By introducing an appropriate Lyapunov-Krasovskii functional and using Jensen inequality technique to deal with its derivative, delay-range-dependent and rate-dependent stabilization criteria are presented in the form of LMIs with nonlinear constraints. In order to solve the nonlinear problem, a cone complementarity linearization (CCL) algorithm is offered. In addition, several numerical examples are provided to illustrate the applicability of the proposed approach.