Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2016, Article ID 1764527, 15 pages
http://dx.doi.org/10.1155/2016/1764527
Research Article

AUV-Based Plume Tracking: A Simulation Study

1Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X5
2C-CORE, Captain Robert A. Bartlett Building, Morrissey Road, St. John’s, NL, Canada A1B 3X5

Received 27 September 2015; Accepted 29 December 2015

Academic Editor: Kalyana C. Veluvolu

Copyright © 2016 Awantha Jayasiri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Das, F. Py, T. Maughan et al., “Simultaneous tracking and sampling of dynamic oceanographic features with autonomous underwater vehicles and lagrangian drifters,” in Experimental Robotics: The 12th International Symposium on Experimental Robotics, vol. 79 of Springer Tracts in Advanced Robotics, pp. 541–555, Springer, Berlin, Germany, 2014. View at Publisher · View at Google Scholar
  2. J. Das, K. Rajan, S. Frolov et al., “Towards marine bloom trajectory prediction for AUV mission planning,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '10), pp. 4784–4790, IEEE, Anchorage, Alaska, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S. Sukhatme, “Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model,” International Journal of Robotics Research, vol. 29, no. 12, pp. 1475–1497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E. Davis, “Collective motion, sensor networks, and ocean sampling,” Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localization: a review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Stutters, H. Liu, C. Tiltman, and D. J. Brown, “Navigation technologies for autonomous underwater vehicles,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 38, no. 4, pp. 581–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Morgado, P. Oliveira, C. Silvestre, and J. F. Vasconcelos, “Embedded vehicle dynamics aiding for USBL/INS underwater navigation system,” IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 322–330, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Hegrenas, K. Gade, O. K. Hagen, and P. E. Hagen, “Underwater transponder positioning and navigation of autonomous underwater vehicles,” in Proceedings of the MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges (OCEANS '09), pp. 1–7, IEEE, Biloxi, Miss, USA, October 2009.
  9. R. M. Eustice, L. L. Whitcomb, H. Singh, and M. Grund, “Experimental results in synchronous-clock one-way-travel-time acoustic navigation for autonomous underwater vehicles,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '07), pp. 4257–4264, Roma, Italy, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Fallon, M. Kaess, H. Johannsson, and J. J. Leonard, “Efficient AUV navigation fusing acoustic ranging and side-scan sonar,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '11), pp. 2398–2405, IEEE, Shanghai, China, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Inzartsev, Underwater Vehicles, InTech, Rijeka, Croatia, 2009.
  12. Ø. Hegrenæs, O. Hallingstad, and K. Gade, “Towards model-aided navigation of underwater vehicles,” Modeling, Identification and Control, vol. 28, no. 4, pp. 113–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Ø. Hegrenaes and O. Hallingstad, “Model-aided INS with sea current estimation for robust underwater navigation,” IEEE Journal of Oceanic Engineering, vol. 36, no. 2, pp. 316–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Prestero, Verification of a six-degree of freedom simulation mode for the REMUS autonomous underwater vehicle [Master's Thesis], Massachusetts Institute of Technology, Cambridge, Mass, USA, 2001.
  15. A. Jayasiri, R. G. Gosine, G. K. I. Mann, and P. McGuire, “Simulation of aided AUV navigation and adaptive plume tracking,” in Proceedings of the IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE '14), pp. 1–6, IEEE, Toronto, Canada, May 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley & Sons, 1994.
  17. J. Diebel, “Representing attitude: euler angles, unit quaternions, and rotation vectors,” Tech. Rep., Stanford University, Stanford, Calif, USA, 2006. View at Google Scholar
  18. M. K. L. Zaworski, D. Chaberski, and M. Zielinski, “Quantization error in time-to-digital converters,” Metrology and Measurement Systems, vol. 19, no. 1, pp. 115–122, 2012. View at Google Scholar
  19. M. Morgado, P. Oliveira, C. Silvestre, and J. Vasconcelos, “Improving aiding techniques for usbl tightly-coupled inertial navigation system,” in Proceedings of the 17th IFAC World Coggress, pp. 15 973–15 978, Seoul, South Korea, July 2008.
  20. P. A. Miller, J. A. Farrell, Y. Zhao, and V. Djapic, “Autonomous underwater vehicle navigation,” IEEE Journal of Oceanic Engineering, vol. 35, no. 3, pp. 663–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Grenon, P. E. An, S. M. Smith, and A. J. Healey, “Enhancement of the inertial navigation system for the morpheus autonomous underwater vehicles,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 548–560, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Wan and R. Van der Merwe, “The unscented kalman filter for nonlinear estimation,” in Proceedings of the Adaptive Systems for Signal Processing, Communications, and Control Symposium (AS-SPCC '00), pp. 153–158, IEEE, Alberta, Canada, 2000.
  23. Z. Jin and A. L. Bertozzi, “Environmental boundary tracking and estimation using multiple autonomous vehicles,” in Proceedings of the 46th IEEE Conference on Decision and Control (CDC '07), pp. 4918–4923, IEEE, New Orleans, La, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kemp, A. Bertozzi, and D. Marthaler, “Multi-UUV perimeter surveillance,” in Proceedings of the Autonomous Underwater Vehicles (IEEE/OES '14), pp. 102–107, Sebasco, Me, USA, June 2004. View at Publisher · View at Google Scholar
  25. Y. Tian, W. Li, A. Zhang, and J. Yu, “Behavior-based control of an autonomous underwater vehicle for adaptive plume mapping,” in Proceedings of the 2nd International Conference on Intelligent Control and Information Processing (ICICIP '11), vol. 2, pp. 719–724, IEEE, Harbin, China, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Rogowski, E. Terrill, M. Otero, L. Hazard, and W. Middleton, “Mapping ocean outfall plumes and their mixing using autonomous underwater vehicles,” Journal of Geophysical Research-Oceans, vol. 117, no. 7, Article ID C07016, pp. 1–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Zhang, R. S. McEwen, J. P. Ryan et al., “A peak-capture algorithm used on an autonomous underwater vehicle in the 2010 Gulf of Mexico oil spill response scientific survey,” Journal of Field Robotics, vol. 28, no. 4, pp. 484–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Petillo, H. Schmidt, and A. Balasuriya, “Constructing a distributed AUV network for underwater plume-tracking operations,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 191235, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Cannell, A. S. Gadre, and D. J. Stilwell, “Boundary tracking and rapid mapping of a thermal plume using an autonomous vehicle,” in Proceedings of the OCEANS, pp. 1–6, IEEE, Boston, Mass, USA, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Das, K. Rajan, S. Frolov et al., “Towards marine bloom trajectory prediction for AUV mission planning,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '10), pp. 4784–4790, Anchorage, Alaska, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus