Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2011, Article ID 458128, 7 pages
http://dx.doi.org/10.1155/2011/458128
Research Article

Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA

Received 17 December 2010; Accepted 18 February 2011

Academic Editor: Giorgia Pastorin

Copyright © 2011 Ripal Gaudana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yang, W. Yuan, and T. Jin, “Formulating protein therapeutics into particulate forms,” Expert Opinion on Drug Delivery, vol. 6, no. 10, pp. 1123–1133, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. F. Van Der Walle, G. Sharma, and M. N. V. R. Kumar, “Current approaches to stabilising and analysing proteins during microencapsulation in PLGA,” Expert Opinion on Drug Delivery, vol. 6, no. 2, pp. 177–186, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. Jorgensen, E. H. Moeller, M. van de Weert, H. M. Nielsen, and S. Frokjaer, “Preparing and evaluating delivery systems for proteins,” European Journal of Pharmaceutical Sciences, vol. 29, no. 3-4, pp. 174–182, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. S. Pisal, M. P. Kosloski, and S. V. Balu-Iyer, “Delivery of therapeutic proteins,” Journal of Pharmaceutical Sciences, vol. 99, no. 6, pp. 2557–2575, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Frokjaer and D. E. Otzen, “Protein drug stability: a formulation challenge,” Nature Reviews Drug Discovery, vol. 4, no. 4, pp. 298–306, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. Van De Weert, W. E. Hennink, and W. Jiskoot, “Protein instability in poly(lactic-co-glycolic acid) microparticles,” Pharmaceutical Research, vol. 17, no. 10, pp. 1159–1167, 2000. View at Google Scholar · View at Scopus
  7. R. Krishnamurthy, J. A. Lumpkin, and R. Sridhar, “Inactivation of lysozyme by sonication under conditions relevant to microencapsulation,” International Journal of Pharmaceutics, vol. 205, no. 1-2, pp. 23–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Houchin and E. M. Topp, “Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms,” Journal of Pharmaceutical Sciences, vol. 97, no. 7, pp. 2395–2404, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. P. Schwendeman, “Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 19, no. 1, pp. 73–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Yang, F. Cui, K. Shi, D. Cun, and R. Wang, “Design of high payload PLGA nanoparticles containing melittinsodium dodecyl sulfate complex by the hydrophobic ion-pairing technique,” Drug Development and Industrial Pharmacy, vol. 35, no. 8, pp. 959–968, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. Yuan, S. P. Jiang, Y. Z. Du, J. Miao, X. G. Zhang, and FU. Q. Hu, “Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles,” Colloids and Surfaces B: Biointerfaces, vol. 70, no. 2, pp. 248–253, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. W. G. Dai and L. C. Dong, “Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing,” International Journal of Pharmaceutics, vol. 336, no. 1, pp. 58–66, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. H. S. Yoo, H. K. Choi, and T. G. Park, “Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles,” Journal of Pharmaceutical Sciences, vol. 90, no. 2, pp. 194–201, 2001. View at Google Scholar · View at Scopus
  14. J. D. Meyer and M. C. Manning, “Hydrophobic ion pairing: altering the solubility properties of biomolecules,” Pharmaceutical Research, vol. 15, no. 2, pp. 188–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Gaudana, A. Parenky, R. Vaishya, S. K. Samanta, and A. K. Mitra, “Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation,” Journal of Microencapsulation, vol. 28, no. 1, pp. 10–20, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. S. Sun, N. Liang, H. Piao, H. Yamamoto, Y. Kawashima, and F. Cui, “Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation,” Journal of Microencapsulation, vol. 27, no. 6, pp. 471–478, 2010. View at Publisher · View at Google Scholar · View at PubMed
  17. M. C. Manning, D. K. Chou, B. M. Murphy, R. W. Payne, and D. S. Katayama, “Stability of protein pharmaceuticals: an update,” Pharmaceutical Research, vol. 27, no. 4, pp. 544–575, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. Gao, Y. Yan, S. Pispas, and P. Yao, “Sustained and extended release with structural and activity recovery of lysozyme from complexes with sodium (sulfamate carboxylate) isoprene/ethylene oxide block copolymer,” Macromolecular Bioscience, vol. 10, no. 2, pp. 139–146, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. Stigter and K. A. Dill, “Charge effects on folded and unfolded proteins,” Biochemistry, vol. 29, no. 5, pp. 1262–1271, 1990. View at Google Scholar · View at Scopus
  20. I. J. Castellanos, W. L. Cuadrado, and K. Griebenow, “Prevention of structural perturbations and aggregation upon encapsulation of bovine serum albumin into poly(lactide-co-glycolide) microspheres using the solid-in-oil-in-water technique,” Journal of Pharmacy and Pharmacology, vol. 53, no. 8, pp. 1099–1107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. I. J. Castellanos, K. G. Carrasquillo, J. De Jésus López, M. Alvarez, and K. Griebenow, “Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique,” Journal of Pharmacy and Pharmacology, vol. 53, no. 2, pp. 167–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Feng, A. De Dille, V. J. Jameson, L. Smith, W. S. Dernell, and M. C. Manning, “Improved potency of cisplatin by hydrophobic ion pairing,” Cancer Chemotherapy and Pharmacology, vol. 54, no. 5, pp. 441–448, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. J. R. Amrutkar and S. G. Gattani, “Chitosan-chondroitin sulfate based matrix tablets for colon specific delivery of indomethacin,” AAPS PharmSciTech, vol. 10, no. 2, pp. 670–677, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. W. Tiyaboonchai and N. Limpeanchob, “Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles,” International Journal of Pharmaceutics, vol. 329, no. 1-2, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. B. Sarmento, S. Martins, A. Ribeiro, F. Veiga, R. Neufeld, and D. Ferreira, “Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers,” International Journal of Peptide Research and Therapeutics, vol. 12, no. 2, pp. 131–138, 2006. View at Publisher · View at Google Scholar
  26. L. I. Shang, Y. Wang, J. Jiang, and S. Dong, “PH-dependent protein conformational changes in albumin:Gold nanoparticle bioconjugates: a spectroscopic study,” Langmuir, vol. 23, no. 5, pp. 2714–2721, 2007. View at Publisher · View at Google Scholar · View at PubMed