Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2011 (2011), Article ID 465845, 10 pages
http://dx.doi.org/10.1155/2011/465845
Review Article

Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

1Department of Thoracic and Cardiovascular Surgery, The University of Texas of MD Anderson Cancer Center, Houston, TX 77030, USA
2Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
3Department of Experimental Therapeutics, The University of Texas of MD Anderson Cancer Center, Houston, TX 77030, USA
4Peggy and Charles Stephenson Oklahoma Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
5Graduate Program in Biological Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA

Received 6 October 2010; Accepted 5 November 2010

Academic Editor: Sanyog Jain

Copyright © 2011 Manish Shanker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts & Figures 2009, American Cancer Society, Atlanta, Ga, USA, 2009.
  2. R. T. Greenlee, T. Murray, S. Bolden, and P. A. Wingo, “Cancer statistics, 2000,” Ca: A Cancer Journal for Clinicians, vol. 50, no. 1, pp. 7–33, 2000. View at Google Scholar · View at Scopus
  3. A. Mhashilkar, S. Chada, J. A. Roth, and R. Ramesh, “Gene therapy: therapeutic approaches and implications,” Biotechnology Advances, vol. 19, no. 4, pp. 279–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Sherr, “Principles of tumor suppression,” Cell, vol. 116, no. 2, pp. 235–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Levine and M. Oren, “The first 30 years of p53: growing ever more complex,” Nature Reviews Cancer, vol. 9, no. 10, pp. 749–758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Lohmann, “Retinoblastoma,” Advances in Experimental Medicine and Biology, vol. 685, pp. 220–227, 2010. View at Google Scholar
  7. J. A. Roth, D. Nguyen, D. D. Lawrence et al., “Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer,” Nature Medicine, vol. 2, no. 9, pp. 985–991, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. S. G. Swisher, J. A. Roth, J. Nemunaitis et al., “Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer,” Journal of the National Cancer Institute, vol. 91, no. 9, pp. 763–771, 1999. View at Google Scholar · View at Scopus
  9. J. Nemunaitis, S. G. Swisher, T. Timmons et al., “Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 18, no. 3, pp. 609–622, 2000. View at Google Scholar · View at Scopus
  10. S. W. Zhang, S. W. Xiao, C. Q. Liu et al., “Treatment of head and neck squamous cell carcinoma by recombinant adenovirus-p53 combined with radiotherapy: a phase II clinical trial of 42 cases,” Zhonghua Yi Xue Za Zhi, vol. 83, no. 23, pp. 2023–2028, 2003. View at Google Scholar · View at Scopus
  11. E. Marshall, “Gene therapy death prompts review of adenovirus vector,” Science, vol. 286, no. 5448, pp. 2244–2245, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kafri, D. Morgan, T. Krahl, N. Sarvetnick, L. Sherman, and I. Verma, “Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11377–11382, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yang, H. C. J. Ertl, and J. M. Wilson, “MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses,” Immunity, vol. 1, no. 5, pp. 433–442, 1994. View at Google Scholar · View at Scopus
  14. Y. Yang, J. Ku, Q. Su, H. C. J. Ertl, and J. M. Wilson, “Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo,” Gene Therapy, vol. 3, no. 2, pp. 137–144, 1996. View at Google Scholar · View at Scopus
  15. T. Niidome and L. Huang, “Gene therapy progress and prospects: nonviral vectors,” Gene Therapy, vol. 9, no. 24, pp. 1647–1652, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Therapy, vol. 13, no. 18, pp. 1313–1319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Huisman, E. F. Smit, G. Giaccone, and P. E. Postmus, “Second-line chemotherapy in relapsing or refractory non-small-cell lung cancer: a review,” Journal of Clinical Oncology, vol. 18, no. 21, pp. 3722–3730, 2000. View at Google Scholar · View at Scopus
  18. Y. A. Hannun, “Apoptosis and the dilemma of cancer chemotherapy,” Blood, vol. 89, no. 6, pp. 1845–1853, 1997. View at Google Scholar · View at Scopus
  19. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O'Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” The Lancet Oncology, vol. 7, no. 8, pp. 657–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Xu, C. C. Huang, W. Huang et al., “Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes,” Molecular Cancer Therapeutics, vol. 1, no. 5, pp. 337–346, 2002. View at Google Scholar · View at Scopus
  21. S. Sundaram, R. Trivedi, C. Durairaj, R. Ramesh, B. K. Ambati, and U. B. Kompella, “Targeted drug and gene delivery systems for lung cancer therapy,” Clinical Cancer Research, vol. 15, no. 23, pp. 7299–7308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Srinivasan and D. J. Burgess, “Optimization and characterization of anionic lipoplexes for gene delivery,” Journal of Controlled Release, vol. 136, no. 1, pp. 62–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Sun, M. Zhong, X. Shi, and Z. Li, “Anionic LPD complexes for gene delivery to macrophage: preparation, characterization and transfection in vitro,” Journal of Drug Targeting, vol. 16, no. 9, pp. 668–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Review of Molecular Diagnostics, vol. 6, no. 2, pp. 231–244, 2006. View at Publisher · View at Google Scholar
  25. H. Devalapally, D. Shenoy, S. Little, R. Langer, and M. Amiji, “Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model,” Cancer Chemotherapy and Pharmacology, vol. 59, no. 4, pp. 477–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L. H. Reddy, K. Vivek, N. Bakshi, and R. S. R. Murthy, “Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation,” Pharmaceutical Development and Technology, vol. 11, no. 2, pp. 167–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. O. C. Farokhzad, J. M. Karp, and R. Langer, “Nanoparticle-aptamer bioconjugates for cancer targeting,” Expert Opinion on Drug Delivery, vol. 3, no. 3, pp. 311–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Liu, L. C. Mounkes, H. D. Liggitt et al., “Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery,” Nature Biotechnology, vol. 15, no. 2, pp. 167–173, 1997. View at Google Scholar · View at Scopus
  29. N. S. Yew, K. X. Wang, M. Przybylska et al., “Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes,” Human Gene Therapy, vol. 10, no. 2, pp. 223–234, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. B. D. Freimark, H. P. Blezinger, V. J. Florack et al., “Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes,” Journal of Immunology, vol. 160, no. 9, pp. 4580–4586, 1998. View at Google Scholar · View at Scopus
  31. A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnology Journal, vol. 4, no. 11, pp. 1559–1572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Ramezani, M. Khoshhamdam, A. Dehshahri, and B. Malaekeh-Nikouei, “The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes,” Colloids and Surfaces B, vol. 72, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Yang and L. Huang, “Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA,” Gene Therapy, vol. 4, no. 9, pp. 950–960, 1997. View at Google Scholar · View at Scopus
  34. S. Li, W. C. Tseng, D. Beer Stolz, S. P. Wu, S. C. Watkins, and L. Huang, “Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection,” Gene Therapy, vol. 6, no. 4, pp. 585–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Li and F. C. Szoka, “Lipid-based nanoparticles for nucleic acid delivery,” Pharmaceutical Research, vol. 24, no. 3, pp. 438–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. P. Torchilin, “Polymer-coated long-circulating microparticulate pharmaceuticals,” Journal of Microencapsulation, vol. 15, no. 1, pp. 1–19, 1998. View at Google Scholar · View at Scopus
  37. F. Szoka and D. Papahadjopoulos, “Comparative properties and methods of preparation of lipid vesicles (liposomes),” Annual Review of Biophysics and Bioengineering, vol. 9, pp. 467–508, 1980. View at Google Scholar · View at Scopus
  38. K. Iga, K. Ohkouchi, Y. Ogawa, and H. Toguchi, “Membrane modification by negatively charged stearyl-polyoxyethylene derivatives for thermosensitive liposomes: reduced liposomal aggregation and avoidance of reticuloendothelial system uptake,” Journal of Drug Targeting, vol. 2, no. 3, pp. 259–267, 1994. View at Google Scholar · View at Scopus
  39. M. M. Mady, M. M. Ghannam, W. A. Khalil et al., “Efficient gene delivery with serum into human cancer cells using targeted anionic liposomes,” Journal of Drug Targeting, vol. 12, no. 1, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Fattal, P. Couvreur, and C. Dubernet, “"Smart" delivery of antisense oligonucleotides by anionic pH-sensitive liposomes,” Advanced Drug Delivery Reviews, vol. 56, no. 7, pp. 931–946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. N. S. Templeton, D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis, “Improved DNA: liposome complexes for increased systemic delivery and gene expression,” Nature Biotechnology, vol. 15, no. 7, pp. 647–652, 1997. View at Google Scholar · View at Scopus
  42. K. M. L. Gaensler, G. Tu, S. Bruch et al., “Fetal gene transfer by transuterine injection of cationic liposome-DNA complexes,” Nature Biotechnology, vol. 17, no. 12, pp. 1188–1192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Crook, B. J. Stevenson, M. Dubouchet, and D. J. Porteous, “Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum,” Gene Therapy, vol. 5, no. 1, pp. 137–143, 1998. View at Google Scholar · View at Scopus
  44. R. Ramesh, T. Saeki, N. S. Templeton et al., “Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector,” Molecular Therapy, vol. 3, no. 3, pp. 337–350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Gopalan, I. Ito, C. D. Branch, C. Stephens, J. A. Roth, and R. Ramesh, “Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response,” Technology in Cancer Research and Treatment, vol. 3, no. 6, pp. 647–657, 2004. View at Google Scholar · View at Scopus
  46. R. Ramesh, I. Ito, Y. Saito et al., “Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery,” DNA and Cell Biology, vol. 23, no. 12, pp. 850–857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Ito, L. Ji, F. Tanaka et al., “Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo,” Cancer Gene Therapy, vol. 11, no. 11, pp. 733–739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. W. G. Deng, G. Wu, K. Ueda, K. Xu, J. A. Roth, and L. Ji, “Enhancement of antitumor activity of cisplatin in human lung cancer cells by tumor suppressor FUS1,” Cancer Gene Therapy, vol. 15, no. 1, pp. 29–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Ito, G. Began, I. Mohiuddin et al., “Increased uptake of liposomal-DNA complexes by lung metastases following intravenous administration,” Molecular Therapy, vol. 7, no. 3, pp. 409–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Li, S. P. Wu, M. Whitmore et al., “Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors,” American Journal of Physiology, vol. 276, no. 5, pp. L796–L804, 1999. View at Google Scholar · View at Scopus
  51. I. Ito, T. Saeki, I. Mohuiddin et al., “Persistent transgene expression following intravenous administration of a liposomal complex: role of interleukin-10-mediated immune suppression,” Molecular Therapy, vol. 9, no. 3, pp. 318–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Ramesh, “Nanoparticle-mediated gene delivery to the lung,” Methods in Molecular Biology, vol. 434, pp. 301–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Lu, D. J. Stewart, L. Ji et al., “A phase I trial of intravenous therapy with tumor suppressor Fus1-nanoparticles for recurrent/metastatic lung cancer,” Journal of Clinical Oncology, vol. 27, abstract e19065, 2009. View at Google Scholar
  54. M. I. Lerman and J. D. Minna, “The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes,” Cancer Research, vol. 60, no. 21, pp. 6116–6133, 2000. View at Google Scholar
  55. E. R. Zabarovsky, M. I. Lerman, and J. D. Minna, “Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers,” Oncogene, vol. 21, no. 45, pp. 6915–6935, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Prudkin, C. Behrens, D. D. Liu et al., “Loss and reduction of Fus1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer,” Clinical Cancer Research, vol. 14, no. 1, pp. 41–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kondo, L. Ji, C. Kamibayashi et al., “Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells,” Oncogene, vol. 20, no. 43, pp. 6258–6262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Ji and J. A. Roth, “Tumor suppressor FUS1 signaling pathway,” Journal of Thoracic Oncology, vol. 3, no. 4, pp. 327–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Ji, M. Nishizaki, B. Gao et al., “Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo,” Cancer Research, vol. 62, no. 9, pp. 2715–2720, 2002. View at Google Scholar · View at Scopus
  60. Y. P. Sher, T. F. Tzeng, S. F. Kan et al., “Cancer targeted gene therapy of BikDD inhibits orthotopic lung cancer growth and improves long-term survival,” Oncogene, vol. 28, no. 37, pp. 3286–3295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. C. Hung, G. N. Hortobagyi, and N. T. Ueno, “Development of clinical trial of E1A gene therapy targeting HER-2/neu-overexpressing breast and ovarian cancer,” Advances in Experimental Medicine and Biology, vol. 465, pp. 171–180, 2000. View at Google Scholar · View at Scopus
  62. G. N. Hortobagyi, N. T. Ueno, W. Xia et al., “Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial,” Journal of Clinical Oncology, vol. 19, no. 14, pp. 3422–3433, 2001. View at Google Scholar · View at Scopus
  63. A. G. Cuenca, H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance, and S. R. Grobmyer, “Emerging implications of nanotechnology on cancer diagnostics and therapeutics,” Cancer, vol. 107, no. 3, pp. 459–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Kubik, K. Bogunia-Kubik, and M. Sugisaka, “Nanotechnology on duty in medical applications,” Current Pharmaceutical Biotechnology, vol. 6, no. 1, pp. 17–33, 2005. View at Google Scholar · View at Scopus
  65. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O'Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” The Lancet Oncology, vol. 7, no. 8, pp. 657–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Fattal, P. Couvreur, and C. Dubernet, “"Smart" delivery of antisense oligonucleotides by anionic pH-sensitive liposomes,” Advanced Drug Delivery Reviews, vol. 56, no. 7, pp. 931–946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Y. Wu and N. A.J. McMillan, “Lipidic systems for in vivo siRNA delivery,” The AAPS Journal, vol. 11, no. 4, pp. 639–652, 2009. View at Publisher · View at Google Scholar