Journal of Drug Delivery

Journal of Drug Delivery / 2012 / Article
Special Issue

Nanotechnologies in Cancer

View this Special Issue

Review Article | Open Access

Volume 2012 |Article ID 265691 |

Duncan Ayers, Alessandro Nasti, "Utilisation of Nanoparticle Technology in Cancer Chemoresistance", Journal of Drug Delivery, vol. 2012, Article ID 265691, 12 pages, 2012.

Utilisation of Nanoparticle Technology in Cancer Chemoresistance

Academic Editor: Michele Caraglia
Received06 Aug 2012
Revised11 Oct 2012
Accepted11 Oct 2012
Published14 Nov 2012


The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.

1. Introduction

It is definitely not a matter of dispute that chemotherapy and its constituent cytotoxic agents play a vital role in the clinical management of the vast majority of cancer conditions. Chemotherapy measures focus on eradication of tumour presence or (at least) control the degree of tumour progression and metastasis. However, this therapy has its own critical flaws due to two major issues, namely, dose-dependent adverse conditions and the emergence of chemoresistance properties within the tumour.

2. Dose-Dependent Cumulative Adverse Effects

The issue of dose-dependent cumulative adverse effects derives from the pharmacological properties of cytotoxic chemotherapeutic agents, which are not tissue-specific and thus affect all tissues in a widespread manner. In addition, tissues having increased turnover rates, such as the gastro-intestinal system and skin, are more vulnerable to cytotoxic drug activity and are the most prevalent dose-limiting cumulative adverse effects in patients undergoing chemotherapy. Table 1 describes in brief the pharmacology and adverse effects of a few of the most commonly prescribed chemotherapeutic agents that are implemented in many cancer chemotherapy strategies.

Cytotoxic drugMechanism of actionMajor adverse effects References

CisplatinInter/intrastrand cross-link formation on nucleophilic N7 sites of adjacent adenine and guanine bases, leading to apoptosis.Dose-dependent ototoxicity nephrotoxicity, neurotoxicity, and myelosuppression.[39]

CarboplatinInter/intrastrand cross-link formation on nucleophilic N7 sites of adjacent adenine and guanine bases, leading to apoptosis.Dose-dependent myelosuppression.[3, 4]

CyclophosphamideOxazaphosphorine DNA-alkylating pro-drug, activated by liver P450 cytochrome-induced 4-hydroxylation., thus forming DNA cross-linking phosphoramide mustard.Neurotoxicity and nephrotoxicity due to chloroacetaldehyde formation by P450 cytochrome-induced oxidation.[10]

DoxorubicinAnthracycline-glucuronide conjugate prodrug activated by tumour β-glucuronidase, whereby the drug/DNA adduct possibly induces apoptosis by topoisomerase 2 inhibition or by a caspase cascade.Dose-dependent cardiotoxicity, hepatotoxicity, and myelosuppression.[1115]

EtoposideTopoisomerase II inhibitor, by raising the stability of the enzyme/DNA cleavage complex, ultimately leading to DNA strand breaks and apoptosis.Possible secondary leukaemia due to chromosomal translocations induced by etoposide strand break activity, myelosuppression.[1622]

Ifosfamide (in severe NB cases)Oxazaphosphorine DNA-alkylating prodrug, activated by liver P450 cytochrome-induced 4-hydroxylation, thus forming DNA cross-linking phosphoramide mustard.Marked neurotoxicity and nephrotoxicity due to increased chloroacetaldehyde formation by P450 cytochrome-induced oxidation.[10]

3. Tumour Chemoresistance Properties

The emergence of chemoresistance within tumour cells of solid tissues is sadly one of the main reasons for treatment failure and relapse in patients suffering from metastatic cancer conditions [1]. Resistance of the tumour cell to chemotherapeutic agent exposure may be innate, whereby the genetic characteristics of the tumour cells are naturally resistant to chemotherapeutic drug exposure [2]. Alternatively, chemoresistance can be acquired through development of a drug resistant phenotype over a defined time period of exposure of the tumour cell to individual/multiple chemotherapy combinations [1, 2] (see Figure 1).

The biological routes by which the tumour cell is able to escape death by chemotherapy are numerous and complex. However, the major pathways enabling chemoresistance in cancer have been studied in detail and are summarised in Table 2.

Chemoresistance methodDescriptionKey player genes, proteins and/or signalling pathwaysReferences

Drug efflux mechanismsUtilisation of drug efflux active pump proteins for expulsion of multiple cytotoxics from tumour cell cytoplasm, thus inducing multidrug resistance (MDR). ATP-dependent binding cassette (ABC) transporter proteins, multidrug resistance 1 (MDR1) gene, P-glycoprotein (P-gp), multidrug resistance 1 protein (MRP1), ABCG2.[2326]

Drug modulationTumour cell ability to inactivate, or at least attenuate, drug activation through the modulation of expression of key enzyme/s involved in the target cytotoxic drug’s pharmacological and pharmacokinetic pathways.Decreased expression or impairment of folylpoly-gamma glutamate-synthetase activity, resulting in antifolate drug resistance. Effect of glutathione on cisplatin inactivation-mediated chemoresistance.[2729]

Modification of drug targetsUpregulated expression or amplification of a target protein/enzyme, which may prove crucial for drug potency and effectiveness.β-catenin, thymidylate synthase.[30, 31]

Repair mechanisms following DNA damageExacerbated activity of components of the nucleotide excision repair pathway following tumour cell DNA damage.Excision repair cross complementing 1 protein, microsatellite instability phenotype due to mutations in DNA mismatch repair genes.[3237]

DNA methylation mechanismsInhibition of key tumour suppressor genes leading to DNA methylations.Caspase-8 promoter hypermethylation in neuroblastoma.[38, 39]

p53 statusDysfunction or loss of DNA damage/other stress induced p53 pathway-mediated apoptotic activity.Mouse double minute 2 (Mdm2), p53 encoding gene (TP53).[4046]

Apoptotic pathway defectsDysfunction or inactivation of the cytotoxic drug targeted intrinsic/extrinsic proapoptotic pathways in tumour cells.Bcl-2 protein family, cellular FADD-like interleukin 1 beta converting enzyme-inhibitory protein (c-FLIP), cellular inhibitors of apoptosis proteins (cIAPs).[4759]

Proliferative pathway activationStimulation of cell proliferation through modulation of the PI3K and extracellular signal-regulated kinase (ERK) survival signalling pathwaysProtein tyrosine kinases (PTKs) families, epidermal growth factor receptor (EGFR) family, transcription factor kappa B (NFκB), Sirtuins (SIRTs).[6068]

4. Nanoparticle Technology

The introduction of nanotechnology in the last few decades has led to an undisputed boom in the conception and development of innovative methods for effective and safe delivery of small-molecule drugs and gene-based therapies to their intended target tissues.

The advantages of exploiting nanoparticle delivery systems are many, such as the possibility to protect nuclease-labile drug therapies, such as short interfering RNAs (siRNAs) and microRNAs (miRNAs) during transit within the bloodstream [87, 88]. In addition, implementation of nanoparticle-based delivery systems has led to improved pharmacokinetic profiles for the specific drug being carried within such a system, together with enhanced targeting of the site of action of the drug [8991]. The excellent review by Hu and Zhang [92] highlighted that nanoparticles also have the capacity to carry combination therapies of two drugs/small molecules and have demonstrated to be particularly effective in circumventing multidrug resistance (MDR) issues in multiple cancer models.

The chemical composition of nanoparticles, both from natural occurring compounds (see Figure 2) and synthetic ones (see Table 3), is varied and the selection of which nanoparticle to utilize for any individual drug delivery system is very much dependent on a multitude of factors such as the chemical nature of the drug to be transported, the loading capacity of the nanoparticle, and resultant pharmacokinetic and pharmacodynamics properties of the nanoparticle following drug loading [93].

Nanoparticle (NP) compositionUnique characteristics and advantagesAdverse effects/toxicity of nanoparticle componentsReferences

Solid lipidAcidic pH of MDR tumour cells favours drug release from NP.No haemolytic activity in human erythrocytes.[69]

Polymer-basedVersatile acid-responsive drug release kinetics.Minimal cytotoxicity observed on ovarian cancer cell lines.[70]

HydrogelsEasy synthesis, peptide-attachment facility for targeted delivery.Nontoxic.[71]

Magnetic (iron oxide) Allows for physical (magnetic) enhancement of the passive mechanisms implemented for the extravastation and accumulation within the tumour microenvironment.L-glutamic acid coated iron oxide nanoparticles demonstrated in vitro biocompatibility.[7274]

Micelle-basedCapable of solubilizing a wide range of water-insoluble drugs.Relatively safe, though elevated doses can induce dose-dependent adverse effects such as hyperlipidaemia, hepatosplenomegaly, and gastrointentinal disorders.[7577]

GoldLack of complexity in their synthesis, characterization, and surface functionality. Gold nanoparticles also have shape/size-dependent optoelectronic characteristics.Can induce cellular DNA damage.[7880]

Quantum dotsCapacity to be tracked in real time within specific areas of the target cells, due to their intrinsic fluorescence properties.Potential long-term toxicity due to release of toxic components (e.g., Cadmium) and generation of reactive oxygen species.[81, 82]

ChitosanNaturally occurring compound, derived from crustacean shells.High biocompatibility properties.[83, 84]

Mesoporous silicaPhysical characteristics (e.g., size, shape) can be easily modified to induce bespoke pharmacokinetic/pharmacodynamics profiles.Possible membrane peroxidation, glutathione depletion, mitochondrial dysfunction, and/or DNA damage.[85, 86]

It is beyond the scope of this review to delve into the specific technical details regarding each individual type of nanoparticle utilized at present, as this has been already discussed extensively in other technical reviews and research articles within the literature [83, 84, 94, 95]. However, a brief summary encompassing the spectrum of varying nanoparticle compositions, key advantages together with toxicity profiles can be viewed in Table 3 and Figure 3.

5. Recent Advances in Nanoparticle-Based Cancer Chemoresistance Circumvention Methodologies

The study carried out by Kang et al. [69] demonstrated that administration of solid lipid nanoparticles containing doxorubicin (SLN-Dox) to the adriamycin-resistant breast cancer cell line MCF-7/ADR, which also overexpressed P-glycoprotein (P-gp), allowed for chemosensitisation of the cell line. This was induced due to enhanced accumulation of doxorubicin within the cell line, contributed by the nanoparticle-based delivery method, and thus the degree of apoptosis was enhanced [69].

The same principle of exploiting nanoparticle delivery to substantiate chemotherapeutic drug accumulation within the target cancer cell, with the ultimate goal of enhancing tumour chemosensitivity, was adopted in the study by Aryal et al. [70]. Polymer-cisplatin conjugate nanoparticles were developed and consequently delivered to A2780 human ovarian carcinoma cell line [70]. The added potential of this delivery system relied on the cisplatin analogue prodrug covalently linked to a poly(ethylene glycol)-based polymer, which only released its therapeutic payload in a low pH environment [70]. Consequently, clinical administration of such a delivery system would ensure that the drug will remain complexed whilst in transit within the bloodstream due to its neutral pH environment [70].

Additionally, RNAi therapeutics have come to rely much further on the utilization of nanoparticle delivery systems to exert their biological effects. The study by Dickerson et al. [71] elucidated the efficiency to knock-down genes such as epidermal growth factor receptor (EGFR) by the delivery of EGFR-specific siRNAs contained within core/shell hydrogel nanoparticles (nanogels). The nanogels were also coated with peptides targeting the EphA2 receptor to enhance delivery of anti-EGFR siRNAs within the targeted Hey tumour cells [71]. Consequently, the knock-down effect on EGFR led to enhanced chemosensitivity of cancer cells to taxane chemotherapy [71].

The implementation of nanoparticle technology has also demonstrated to aid the clinical effect of other therapies that were previously unsuccessful due to poor drug delivery issues. Jin et al. [98] developed transferrin conjugated pH-sensitive lipopolyplex nanoparticles with the capacity to bind specific oligodeoxynucleotides (GTI-2040 in this case). This delivery system allowed GTI-2040 to exert its effect on the R2 subunit of the chemoresistance factor ribonucleotide reductase in acute myeloid leukaemia cell line models [98]. The influence of ultilising such a delivery system was evident in that the 50% inhibitory concentration (IC(50)) for 1 μM GTI-2040 decreased from 47.69 nM to 9.05 nM [98].

An additional nanoparticle delivery system, adopted against MDR in leukaemic conditions, was investigated by Cheng et al. [72]. This system combined magnetic iron oxide nanoparticles together with daunorubicin and 5-bromotetrandrin, which proved to possess a sustained release pharmacokinetic drug profile when administered to K562/A02 multidrug resistant leukaemic cell lines [72]. The principle behind the utilization of magnetic nanoparticles is due to the effects of magnetic field gradients positioned in a nonparallel manner with respect to flow direction within the tumour vasculature [73]. This allows for physical (magnetic) enhancement of the passive mechanisms implemented for the extravastation and accumulation of such magnetically responsive nanoparticles within the tumour microenvironment, followed by cellular uptake of the nanoparticles within the target tumour cell cytoplasm [73]. The magnetically responsive nanoparticle itself is composed of one or a combination of the three ferromagnetically active elements at physiological temperature, namely, iron, nickel, and cobalt [73]. The delivery system described by Cheng et al. [72] also aided in providing a dose-dependent antiproliferative effect on such cell lines, together with enhanced intracellular accumulation of daunorubicin and downregulated transcript expression of MDR1 gene, the main factor for induction of MDR in most cancer models [72]. These factors all contributed to a reduction in MDR and were directed by the level of endosomal-mediated cellular uptake properties of such nanoparticles [100].

In chronic myelogenous leukaemia (CML), a Bcr-Abl positive status induces MDR properties through multiple pathways, including resistance to p53 and Fas ligand-induced apoptotic pathways [101]. The delivery system devised by Singh et al. [101] consisted of magnetic nanoparticles combined with paclitaxel and was consequently administered to Bcr-Abl positive K562 leukaemic cell lines [101]. The addition of lectin functional groups to the nanoparticle complex served to aid cellular uptake by the target K562 cell line and also demonstrated a reduction in the IC(50) for paclitaxel within this cell line model [101].

Multiple myeloma is an additional tumour model that has seen benefit from the exploitation of nanoparticle technology in its therapeutic avenues [76]. The study by Kiziltepe et al. [76] succeeded in developing a micelle-based nanoparticle delivery system containing doxorubicin and very late antigen-4 (VLA-4) antagonist peptides [76]. This delivery method not only accomplished enhanced cytotoxic activity when compared to doxorubicin alone, but also the addition of VLA-4 antagonist peptides served well in circumventing the phenomenon of cell-adhesion-mediated drug resistance due to the resultant impaired VLA-4 mediated adhesion of multiple myeloma cells to the stroma of bone marrow within CB.17 SCID murine multiple myeloma xenograft models [76]. Additionally, drug accumulation within the stroma of the multiple myeloma murine xenograft models was also tenfold higher than the control murine model [76].

Yet another tumour model that has been investigated for the application of nanoparticle-based chemotherapy, for the purpose of avoidance of chemoresistance, is prostate cancer [102]. Gold nanoparticles are an attractive avenue for drug delivery researchers primarily due to their lack of complexity in their synthesis, characterization, and surface functionality [78]. Gold nanoparticles also have shape/size-dependent optoelectronic characteristics [78]. The endosomal-based route for gold nanoparticle cellular uptake can be viewed as the primary advantage for circumventing MDR within the tumour cell, since the drug efflux pump is bypassed and the nanoparticle-held chemotherapeutic agent is released within the acidic environment of the endosome and allowed to penetrate the tumour cell cytoplasm [79]. Consequently, tumour progression phenotypes such as cell proliferation and level of apoptosis are affected to direct an amelioration of patient prognosis.

Gold nanoparticle/antiandrogen conjugates were developed by Dreaden et al. [102], with the capacity to selectively bind to two surface receptors which are upregulated in prostate tumour cell surface. Thus allowing accumulation of the nanoparticle conjugate specifically within treatment-resistant prostate tumour cells [102]. Gold nanoparticles were also exploited in the study conducted by Tomuleasa et al. [103] for the purpose of reducing MDR hepatocellular carcinoma-derived cancer cells. The gold nanoparticles were loaded with doxorubicin, capecitabine, and cisplatin, followed by nanoparticle stabilization by L-aspartate [103]. The resultant cellular proliferation rates of the hepatocellular carcinoma cells treated with this nanoparticle-based therapy were found to be lowered drastically [103].

In the study carried out by Punfa et al. [104], the cytotoxic properties of curcumin on multidrug resistant cervical tumours were maximized through the development of a nanoparticle-curcumin drug delivery system. Curcumin was successfully entrapped within poly (DL-lactide-co-glycolide) (PLGA) nanoparticles, followed by the incorporation of the amino-terminal of anti-P-gp [104]. Consequently, the curcumin-nanoparticle conjugates were deployed onto the KB-V1 cervical cancer cell line, having upregulated P-gp expression, together with the KB-3-1 cell line that has a reduced P-gp expression level [104]. The results of this study demonstrated that nanoparticle conjugates bearing anti-P-gp surface markers were highly efficient in binding to the MDR-inducing surface protein, allowing enhanced cellular uptake and ultimately aid in the cytotoxic efficacy of curcumin due to increased accumulation of the drug, particularly within the KB-V1 cell line due to its exacerbated P-gp expression status [104].

Curcumin/doxorubicin-laden composite polymer nanoparticles were also developed in other studies [105] as a means of enhancing the pharmacokinetic and pharmacodynamics properties of curcumin, thus enhancing its MDR-modulating effect in the target tumour cells. The resultant nanoparticle complex was deployed onto several MDR tumour models such as acute leukaemia, multiple myeloma, and ovarian cancers, both in vitro and in vivo [105]. The results of this study highlighted the possibility of administration of lower doses of doxorubicin due to the circumvention of tumour MDR by efficient curcumin activity, thus enhancing the toxicity profile for doxorubicin in clinical use stemming from the reduction in cardiotoxicity and haematological toxicity dose-dependent adverse effects [105].

Retinoblastoma therapeutic avenues have also been increased due to the introduction of nanoparticle drug delivery technology. The study by Das and Sahoo demonstrated the effectiveness of utilising a nanoparticle delivery system which was dual loaded with curcumin together with nutlin-3a (which has been proven to stimulate the activity of the tumour suppressor protein p53) [106]. The results of this particular investigation highlighted an enhanced level of therapeutic efficacy on utilizing the nanoparticle-curcumin-nutlin-3a conjugates on the target retinoblastoma Y79 cell lines [106]. In addition, a downregulation of bcl2 and NFκB was also observed following cell line exposure to the nanoparticle conjugates [106].

The nanoparticle-based drug delivery system designed by Saxena and Hussain [96] for its application against multidrug resistant breast tumours was novel in that the actual components of the nanoparticle biomaterials, namely, poloxamer 407 and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), are both known to exert pharmacological activity against P-gp [96]. The drug utilized for nanoparticle loading in this case was gambogic acid, a naturally occurring cytotoxic agent though laden with issues of poor bioavailability and severe dose-limiting adverse effects [96]. Similarly to other studies mentioned above, the incorporation of a nanoparticle-based drug delivery system allowed for enhanced cellular uptake by the target breast cancer cell line MCF-7, thus leading to elevated drug accumulation on the intracellular level and ultimately inducing enhanced cytotoxic effects in the target breast cancer cell line [96].

A separate nanoparticle-based drug delivery system for use in circumventing MDR effects in breast cancer is the one developed by Li et al. [107]. In this study, the nanoparticle drug delivery system consisted of a dimethyldidodecylammonium bromide (DMAB)-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle core that was conjugated to doxorubicin, then consequently coated with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) shell [107]. This system has been described to be specifically effective against MCF-7 breast cancer cell lines overexpressing P-gp [107]. The results obtained from this particular study indicated an elevated accumulation of doxorubicin released from the nanoparticle complex, within the nuclei of the drug resistant MCF-7 cell line [107]. In comparison, the level of accumulation of freely administered (i.e., not utilising a nanoparticle-based drug delivery system) doxorubicin attained lower drug concentration levels within the same cell line [107]. Finally, the IC(50) levels for doxorubin on adriamycin-resistant MCF-7 have been observed to be lowered by 30-fold following the incorporation of this nanoparticle delivery system [107].

Apart from delivery of conventional chemotherapeutic drugs in drug resistant breast cancer cell line models, researchers also delved into the possibility of adopting siRNA therapeutic approaches, using the aid of nanoparticle drug delivery systems [97]. The study conducted by Navarro et al. [97] developed a nanoparticle-based delivery system for siRNAs targeting P-gp expression, with the nanoparticle constituent biomaterials being dioleoylphosphatidylethanolamine and polyethylenimine (PEI) [97]. Again, the reduction in P-gp expression led the path to enhanced cytoxic effects brought about by the exposure of the MCF-7 cell line to doxorubicin, thus this nanoparticle-siRNA therapy was successful in drastically reducing MDR in this cancer model [97].

Quantum dots have also been implemented as novel and effective drug delivery systems for circumventing multidrug resistance in cancer chemotherapy [81]. Researchers in this study developed a quantum dot-based drug delivery system that allowed anti-MDR1 siRNA and doxorubicin incorporation to two cadmium-selenium/zinc-selenium quantum dots that were eventually functionalized by β-cyclodextrin coupling to L-arginine or L-histamine [81]. Following deployment of these dual loaded quantum dots in the HeLa cervical cancer cell line model, elevated accumulation of doxorubicin within the tumour cells was denoted, together with a marked reduction in MDR1 and P-gp expression on analysis by reverse transcription real time quantitative polymerase chain reaction and western blotting [81]. In line with magnetic and gold nanoparticle platforms, quantum dots rely mainly on the endosomal method of tumour cellular uptake and therefore the drug efflux pump system is bypassed, with consequent reduction in MDR properties by the tumour cells [82]. Finally, the additional benefit of utilizing quantum dots as a drug delivery system is their capacity to be tracked in real time within specific areas of the target cells, due to their intrinsic fluorescence properties [81].

Apart from cell line studies, researchers have also looked into the feasibility of implementing nanoparticle-based drug delivery systems within in vivo models [108]. The study by Milane et al. [108] investigated the efficacy of utilising a EGFR-targeting polymer blend nanoparticles, loaded with paclitaxel and the mitochondrial hexokinase 2 inhibitor lonidamine. The nanoparticle polymer blend consisted of 70% polycaprolactone (PCL) incorporating a PLGA-polyethylene glycol-EGFR specific peptide that helped enable nanoparticle active targeting efficiency [108].

Following nanoparticle development, four groups of orthotopic MDR breast cancer murine models (MDA-MB-231 in nude mice) were treated with free paclitaxel, free lonidamine, free paclitaxel/lonidamine combination, or nanoparticle complexes containing paclitaxel/lonidamine combination [108]. The degree of toxicity of such treatments was also monitored through body weight change measurements, liver enzyme plasma levels, and white blood cell/platelet counts, together with H & E staining of tumour sections was carried out [108].

Tumour weight and other clinical parameters such as MDR protein marker (P-gp, Hypoxia Inducible factor α, Hexokinase 2, EGFR, Stem Cell factor) were observed over the course of 28 days after-treatment [108]. Following this 28-day period, the results demonstrated that only the murine model sample group exposed to the nanoparticle-based paclitaxel/lonidamine combination treatment was the only group to experience statistically significant tumour volume and density reduction, together with overall alteration of the MDR phenotype [108]. Toxicity effects due to paclitaxel and lonidamine were also drastically reduced when administered within the nanoparticle-based delivery system, which can ultimately provide enhanced tolerance by the cancer patient [108].

Other in vivo studies in this field include the investigations carried out by Shen et al. [109], which focused on the codelivery of paclitaxel and survivin short hairpin RNA (shRNA) for circumventing chemoresistance in lung cancer. The investigators utilized the pluronic block co-polymer P85 combined with D-α-Tocopheryl polyethylene glycol 1000 succinate (P85-PEI/TPGS) for developing the nanoparticles to be implemented in this study [109]. These nanoparticles were based upon triblock structural formation of hydrophilic poly(ethylene oxide) (PEO) blocks and hydrophobic poly(propylene oxide) (PPO) blocks, which also gives enhanced capacity to revert chemoresistance due to drug efflux pump inhibition properties, downregulation of ATPase activity and P85-induced inhibition of the gluthathione S-transferase compound detoxification enzyme at the subcellular level [109]. Paclitaxel and surviving shRNA were selected as the ideal drugs for nanoparticle delivery due to the former having poor efficacy due to chemoresistance within the tumour, and survivin was identified as highly expressed within chemoresistant tumours [109]. The in vivo activity of such nanoparticle systems (with/without paclitaxel and survivin shRNA) was evaluated on BALB/c nude mice injected with viable, paclitaxel-resistant, A549/T lung adenocarcinoma epithelial cells [109]. The results of this study demonstrated that deployment of the nanoparticle-based chemotherapeutic drug proved to have distinct enhancement of antitumour efficacy, when compared to deployment of the drug/s alone [109].

Chemoresistance to the aromatase inhibitor letrozole in postmenopausal breast cancer is another major therapeutic hurdle which was investigated in vivo [110]. Biodegradable PLGA-polyethylene glycol copolymer nanoparticles were developed by nanoprecipitation and designed to incorporate hyaluronic acid-bound letrozole (HA-Letr-NPs) [110]. The addition of hyaluronic acid served to enhance letrozole binding specificity to CD44 on the target tumour cell surface, with the expected consequences of enhanced drug accumulation within the target tumour cell cytoplasm and resultant re-sensitization of the target tumour cells to letrozole activity [110]. Such HA-Letr-NPs, once produced at a size of less than 100 nm diameter, were deployed within a letrozole-resistant murine xenograft tumour model [110]. The results of this study demonstrated a highly efficient nanoparticle-based drug delivery system, with the IC(50) for HA-Letr-NPs within the murine xenograft model being only 5 μM when compared to the control groups, thus enhancing the in vivo aromatase enzyme activity within the xenograft and ultimately inducing a prolonged resensitising of the breast cancer tumour to letrozole activity [110].

The naturally occurring compound chitosan was also utilized for the development of in vivo nanoparticle-based therapies to circumvent ovarian cancer chemoresistance properties induced by overexpression of the Jagged1 notch ligand [99]. Murine orthotopic models, utilising female athymic nude mice, were injected with SKOV3Trip2 taxane-resistant ovarian cancer cell line and consequently, following one week, subjected to anti-Jagged1 siRNA/chitosan nanoparticle complexes (5 μg dose of siRNA) with/without taxane, applied via intraperitoneal route twice weekly for a total period of five weeks [99]. The results of this study indicated that such nanoparticle-based complexes had the capacity to reduce tumour weight by over 70% within such murine models and also induced taxane sensitization within the tumour [99].

In a similar study, cationic liposome-polycation-DNA (LPD) and anionic liposome-polycation-DNA (LPD II) nanoparticle systems were developed to incorporate doxorubicin and VEGF siRNA within a murine ovarian cancer animal model [111]. Female, athymic nude mice were treated with cells of the MDR ovarian cancer cell line NCI/ADR-RES [111]. Once the murine tumours reached a size of approximately 16–25 mm2, the mice were consequently injected with individual nanoparticle complexes bearing either siRNA or doxorubicin at a dose of 1.2 mg/Kg in both cases, once daily for three consecutive days [111]. The results of this study demonstrated the effectiveness of such nanoparticle complexes for inhibiting tumour progression within the treated murine model groups, mainly due to impaired VEGF expression-related MDR [111].

Other human cancer conditions which were investigated for circumvention of tumour MDR properties through nanoparticle delivery include uterine sarcomas [112]. In the study carried out by Huang et al. [112], pH-sensitive mesoporous silica nanoparticles incorporating hydrazine and doxorubicin were developed for in vivo testing on murine models of doxorubicin-resistant uterine sarcoma. Since the composition of such nanoparticles specifically allow for cellular uptake through endocytosis, bypassing of the P-gp efflux pump induced a marked reduction in P-gp dependent MDR properties [112]. Consequently, the murine MDR tumour model treated with such nanoparticles demonstrated enhanced tumour apoptotic effects which were clearly confirmed by active caspase-3 immunohistochemical validation analysis [112].

6. Conclusion

The latest studies described above undoubtedly serve as a testament to the immense clinical value represented by nanoparticle technology. The ability of such nanoparticles, irrelevant of biomaterial composition to efficiently load individual or combinations of chemotherapeutic drugs and/or chemosensitising agents (such as curcumin) and novel RNA interference-based therapies has been clearly demonstrated above. This property provides an excellent escape mechanism for circumventing target tumour cell multidrug resistance properties based on drug efflux pump activity on the tumour cell surface, such as that exerted by P-gp. The overall advantage of deploying nanoparticles includes the drastic reduction in the IC(50) parameter for most of the carried chemotherapy agents, due to marked intracellular accumulation pharmacodynamics. This in turn would lead to a reduction in the clinical doses of the conventional cytotoxic agents required for chemotherapy, ultimately demonstrating a striking reduction in dose-dependent adverse effects in the oncology patient.

Presently, this does not mean that nanotechnology-based translational therapies are not fraught with challenges, such as biocompatibility issues of the nanoparticle components and the level of complexity required for cost-effectively translating these novel therapies to the patient bedside. However, it is the firm belief of the authors that through constant accumulation of marginal gains in knowledge, derived from persistent and motivated researchers on a global scale, will ultimately overcome such scientific hurdles, thus nanoparticle-based drug delivery aided therapies will eventually become commonplace in the oncology clinic in the near future.


The authors would like to thank Dr. Jennifer Logan (University of Manchester, UK) for the initial design of Figure 1 utilised in this paper.


  1. D. B. Longley and P. G. Johnston, “Molecular mechanisms of drug resistance,” Journal of Pathology, vol. 205, no. 2, pp. 275–292, 2005. View at: Publisher Site | Google Scholar
  2. R. S. Kerbel, H. Kobayashi, and C. H. Graham, “Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes?” Journal of Cellular Biochemistry, vol. 56, no. 1, pp. 37–47, 1994. View at: Google Scholar
  3. D. S. Goodsell, “The molecular perspective: cisplatin,” Oncologist, vol. 11, no. 3, pp. 316–317, 2006. View at: Publisher Site | Google Scholar
  4. G. N. Kaludjerović, D. Miljković, M. Momcilović et al., “Novel platinum(IV) complexes induce rapid tumor cell death in vitro,” International Journal of Cancer, vol. 116, no. 3, pp. 479–486, 2005. View at: Publisher Site | Google Scholar
  5. A. L. Berg, J. B. Spitzer, and J. H. Garvin, “Ototoxic impact of cisplatin in pediatric oncology patients,” Laryngoscope, vol. 109, no. 11, pp. 1806–1814, 1999. View at: Publisher Site | Google Scholar
  6. Y. Li, R. B. Womer, and J. H. Silber, “Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose,” European Journal of Cancer, vol. 40, no. 16, pp. 2445–2451, 2004. View at: Publisher Site | Google Scholar
  7. J. Sastry and S. J. Kellie, “Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine,” Pediatric Hematology and Oncology, vol. 22, no. 5, pp. 441–445, 2005. View at: Publisher Site | Google Scholar
  8. I. Arany and R. L. Safirstein, “Cisplatin nephrotoxicity,” Seminars in Nephrology, vol. 23, no. 5, pp. 460–464, 2003. View at: Publisher Site | Google Scholar
  9. M. Jiang, X. Yi, S. Hsu, C. Y. Wang, and Z. Dong, “Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity,” American Journal of Physiology, vol. 287, no. 6, pp. F1140–F1147, 2004. View at: Publisher Site | Google Scholar
  10. C.-S. Chen, J. T. Lin, K. A. Goss, Y. A. He, J. R. Halpert, and D. J. Waxman, “Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics,” Molecular Pharmacology, vol. 65, no. 5, pp. 1278–1285, 2004. View at: Publisher Site | Google Scholar
  11. A. Ateşşahin, G. Türk, I. Karahan, S. Yilmaz, A. O. Ceribaşi, and O. Bulmuş, “Lycopene prevents adriamycin-induced testicular toxicity in rats,” Fertility and Sterility, vol. 85, no. 1, pp. 1216–1222, 2006. View at: Publisher Site | Google Scholar
  12. M. J. Ferguson, F. Y. Ahmed, and J. Cassidy, “The role of pro-drug therapy in the treatment of cancer,” Drug Resistance Updates, vol. 4, no. 4, pp. 225–232, 2001. View at: Publisher Site | Google Scholar
  13. L. P. Swift, A. Rephaeli, A. Nudelman, D. R. Phillips, and S. M. Cutts, “Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death,” Cancer Research, vol. 66, no. 9, pp. 4863–4871, 2006. View at: Publisher Site | Google Scholar
  14. Chemocare. Doxorubicin, Adriamycin, Rubex—Chemotherapy Drugs, Chemo Drug Side Effects [Internet], 2011,
  15. P. K. Singal and N. Iliskovic, “Doxorubicin-induced cardiomyopathy,” The New England Journal of Medicine, vol. 339, no. 13, pp. 900–905, 1998. View at: Publisher Site | Google Scholar
  16. K. R. Hande, “Etoposide: four decades of development of a topoisomerase II inhibitor,” European Journal of Cancer, vol. 34, no. 10, pp. 1514–1521, 1998. View at: Publisher Site | Google Scholar
  17. M. Duca, D. Guianvarc'h, K. Oussedik et al., “Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides,” Nucleic Acids Research, vol. 34, no. 6, pp. 1900–1911, 2006. View at: Publisher Site | Google Scholar
  18. The Chemical Heritage Foundation. Magic Bullets, Chemistry vs. Cancer: Cancer Chemotherapy, a chemical needle in a haystack [Internet], 2001,
  19. D. A. Burden, P. S. Kingma, S. J. Froelich-Ammon et al., “Topoisomerase II-etoposide interactions direct the formation of drug- induced enzyme-DNA cleavage complexes,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29238–29244, 1996. View at: Publisher Site | Google Scholar
  20. R. Bagatell, P. Rumcheva, W. B. London et al., “Outcomes of children with intermediate-risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy,” Journal of Clinical Oncology, vol. 23, no. 34, pp. 8819–8827, 2005. View at: Publisher Site | Google Scholar
  21. Electronic Medicines Compendium, What’s New—electronic Medicines Compendium (eMC) [Internet], 2010,
  22. A. R. Mistry, C. A. Felix, R. J. Whitmarsh et al., “DNA topoisomerase II in therapy-related acute promyelocytic leukemia,” The New England Journal of Medicine, vol. 352, no. 15, pp. 1529–1538, 2005. View at: Publisher Site | Google Scholar
  23. R. W. Robey, P. R. Massey, L. Amiri-Kordestani, and S. E. Bates, “ABC transporters: unvalidated therapeutic targets in cancer and the CNS,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 8, pp. 625–633, 2010. View at: Google Scholar
  24. R. Krishna and L. D. Mayer, “Multidrug resistance (MDR) in cancerMechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs,” European Journal of Pharmaceutical Sciences, vol. 11, no. 4, pp. 265–283, 2000. View at: Publisher Site | Google Scholar
  25. M. Colone, A. Calcabrini, L. Toccacieli et al., “The multidrug transporter P-glycoprotein: a mediator of melanoma invasion?” Journal of Investigative Dermatology, vol. 128, no. 4, pp. 957–971, 2008. View at: Publisher Site | Google Scholar
  26. M. D. Norris, S. B. Bordow, G. M. Marshall, P. S. Haber, S. L. Cohn, and M. Haber, “Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma,” The New England Journal of Medicine, vol. 334, no. 4, pp. 231–238, 1996. View at: Publisher Site | Google Scholar
  27. Y. G. Assaraf, “Molecular basis of antifolate resistance,” Cancer and Metastasis Reviews, vol. 26, no. 1, pp. 153–181, 2007. View at: Publisher Site | Google Scholar
  28. T. R. Wilson, D. B. Longley, and P. G. Johnston, “Chemoresistance in solid tumours,” Annals of Oncology, vol. 10, supplement 10, pp. x315–x324, 2006. View at: Google Scholar
  29. C. Meijer, N. H. Mulder, H. Timmer-Bosscha, W. J. Sluiter, G. J. Meersma, and E. G. E. De Vries, “Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds,” Cancer Research, vol. 52, no. 24, pp. 6885–6889, 1992. View at: Google Scholar
  30. J. Yeung, M. T. Esposito, A. Gandillet et al., “β-catenin mediates the establishment and drug resistance of MLL leukemic stem cells,” Cancer Cell, vol. 18, no. 6, pp. 606–618, 2010. View at: Publisher Site | Google Scholar
  31. S. Copur, K. Aiba, J. C. Drake, C. J. Allegra, and E. Chu, “Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil,” Biochemical Pharmacology, vol. 49, no. 10, pp. 1419–1426, 1995. View at: Publisher Site | Google Scholar
  32. P. A. Bradbury, M. H. Kulke, R. S. Heist et al., “Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes,” Pharmacogenetics and Genomics, vol. 19, no. 8, pp. 613–625, 2009. View at: Publisher Site | Google Scholar
  33. S. Arora, A. Kothandapani, K. Tillison, V. Kalman-Maltese, and S. M. Patrick, “Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells,” DNA Repair, vol. 9, no. 7, pp. 745–753, 2010. View at: Publisher Site | Google Scholar
  34. L. Shen and J.-P. J. Issa, “Epigenetics in colorectal cancer,” Current Opinion in Gastroenterology, vol. 18, no. 1, pp. 68–73, 2002. View at: Publisher Site | Google Scholar
  35. H. Kim, J. Y. An, S. H. Noh, S. K. Shin, Y. C. Lee, and H. Kim, “High microsatellite instability predicts good prognosis in intestinal-type gastric cancers,” Journal of Gastroenterology and Hepatology, vol. 26, no. 3, pp. 585–592, 2011. View at: Publisher Site | Google Scholar
  36. M. Takahashi, M. Koi, F. Balaguer, C. R. Boland, and A. Goel, “MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin and a poly(ADP-ribose) polymerase inhibitor,” The Journal of Biological Chemistry, vol. 286, no. 14, pp. 12157–12165, 2011. View at: Google Scholar
  37. L. P. Martin, T. C. Hamilton, and R. J. Schilder, “Platinum resistance: the role of DNA repair pathways,” Clinical Cancer Research, vol. 14, no. 5, pp. 1291–1295, 2008. View at: Publisher Site | Google Scholar
  38. J. Ren, B. N. Singh, Q. Huang et al., “DNA hypermethylation as a chemotherapy target,” Cellular Signalling, vol. 23, no. 7, Article ID 213453, pp. 1082–193, 2011. View at: Google Scholar
  39. T. Teitz, T. Wei, M. B. Valentine et al., “Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN,” Nature Medicine, vol. 6, no. 5, pp. 529–535, 2000. View at: Publisher Site | Google Scholar
  40. N. J. Maclaine and T. R. Hupp, “How phosphorylation controls p53,” Cell Cycle, vol. 10, no. 6, pp. 916–9121, 2011. View at: Google Scholar
  41. A. Macchiarulo, N. Giacchè, F. Mancini, E. Puxeddu, F. Moretti, and R. Pellicciari, “Alternative strategies for targeting mouse double minute 2 activity with small molecules: novel patents on the horizon?” Expert Opinion on Therapeutic Patents, vol. 21, no. 3, pp. 287–294, 2011. View at: Publisher Site | Google Scholar
  42. M. R. Buchakjian and S. Kornbluth, “The engine driving the ship: metabolic steering of cell proliferation and death,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 715–727, 2010. View at: Publisher Site | Google Scholar
  43. R. García-Escudero, A. B. Martínez-Cruz, M. Santos et al., “Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy,” Molecular Cancer, vol. 9, article 193, 2010. View at: Publisher Site | Google Scholar
  44. A. Mogi and H. Kuwano, “TP53 mutations in nonsmall cell lung cancer,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 583929, 9 pages, 2011. View at: Publisher Site | Google Scholar
  45. S. Stilgenbauer and T. Zenz, “Understanding and managing ultra high-risk chronic lymphocytic leukemia,” Hematology, vol. 2010, pp. 481–488, 2010. View at: Google Scholar
  46. F. Al-Ejeh, R. Kumar, A. Wiegmans, S. R. Lakhani, M. P. Brown, and K. K. Khanna, “Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes,” Oncogene, vol. 29, no. 46, pp. 6085–6098, 2010. View at: Publisher Site | Google Scholar
  47. J. Plati, O. Bucur, and R. Khosravi-Far, “Apoptotic cell signaling in cancer progression and therapy,” Integrative Biology, vol. 3, no. 4, Article ID 213400, pp. 279–296, 2011. View at: Google Scholar
  48. Y. Kushnareva and D. D. Newmeyer, “Bioenergetics and cell death,” Annals of the New York Academy of Sciences, vol. 1201, pp. 50–57, 2010. View at: Publisher Site | Google Scholar
  49. L. A. Allan and P. R. Clarke, “Apoptosis and autophagy: regulation of caspase-9 by phosphorylation,” FEBS Journal, vol. 276, no. 21, pp. 6063–6073, 2009. View at: Publisher Site | Google Scholar
  50. S. G. Rolland and B. Conradt, “New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics,” Current Opinion in Cell Biology, vol. 22, no. 6, pp. 852–858, 2010. View at: Publisher Site | Google Scholar
  51. L. Gandhi, D. R. Camidge, M. R. de Oliveira et al., “Phase I study of navitoclax (ABT-263), a novel bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 909–916, 2011. View at: Publisher Site | Google Scholar
  52. W. J. Placzek, J. Wei, S. Kitada, D. Zhai, J. C. Reed, and M. Pellecchia, “A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy,” Cell Death and Disease, vol. 1, no. 5, article e40, 2010. View at: Publisher Site | Google Scholar
  53. U. Testa, “TRAIL/TRAIL-R in hematologic malignancies,” Journal of Cellular Biochemistry, vol. 110, no. 1, pp. 21–34, 2010. View at: Publisher Site | Google Scholar
  54. J. Liu, X. Q. Fu, W. Zhou, H. G. Yu, J. P. Yu, and H. S. Luo, “LY294002 potentiates the anti-cancer effect of oxaliplatin for gastric cancer via death receptor pathway,” World Journal of Gastroenterology, vol. 17, no. 2, pp. 181–190, 2011. View at: Publisher Site | Google Scholar
  55. Z. Yu, R. Wang, L. Xu, S. Xie, J. Dong, and Y. Jing, “β-elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and Generation of ROS,” PLoS ONE, vol. 6, no. 1, Article ID e15843, 2011. View at: Publisher Site | Google Scholar
  56. W. C. Earnshaw, L. M. Martins, and S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates, and functions during apoptosis,” Annual Review of Biochemistry, vol. 68, pp. 383–424, 1999. View at: Publisher Site | Google Scholar
  57. S. L. Petersen, M. Peyton, J. D. Minna, and X. Wang, “Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 11936–11941, 2010. View at: Publisher Site | Google Scholar
  58. P. Lanuti, V. Bertagnolo, L. Pierdomenico et al., “Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3,” Cell Research, vol. 19, no. 9, pp. 1079–1089, 2009. View at: Publisher Site | Google Scholar
  59. C. Gill, C. Dowling, A. J. O'Neill, and R. W. G. Watson, “Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation,” Molecular Cancer, vol. 8, article 39, 2009. View at: Publisher Site | Google Scholar
  60. R. Avraham and Y. Yarden, “Feedback regulation of EGFR signalling: decision making by early and delayed loops,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 104–117, 2011. View at: Publisher Site | Google Scholar
  61. F. Vidal, W. M. de Araujo, A. L. S. Cruz, M. N. Tanaka, J. P. B. Viola, and J. A. Morgado-Díaz, “Lithium reduces tumorigenic potential in response to EGF signaling in human colorectal cancer cells,” International Journal of Oncology, vol. 38, no. 5, pp. 1365–1373, 2011. View at: Publisher Site | Google Scholar
  62. Q. Sheng and J. Liu, “The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer,” British Journal of Cancer, vol. 1041, no. 8, pp. 1241–1245, 2011. View at: Publisher Site | Google Scholar
  63. G. Metro, G. Finocchiaro, L. Toschi et al., “Epidermal growth factor receptor (EGFR) targeted therapies in non-small cell lung cancer (NSCLC),” Reviews on Recent Clinical Trials, vol. 1, no. 1, pp. 1–13, 2006. View at: Publisher Site | Google Scholar
  64. S. E. Al-Batran, M. Ruppert, and E. Jäger, “Trastuzumab plus chemotherapy in gastric cancer overexpressing HER-2 and EGFR: a case report,” Onkologie, vol. 34, no. 1-2, pp. 42–45, 2011. View at: Publisher Site | Google Scholar
  65. S. E. Chuang, P. Y. Yeh, Y. S. Lu et al., “Basal levels and patterns of anticancer drug-induced activation of nuclear factor-κB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells,” Biochemical Pharmacology, vol. 63, no. 9, pp. 1709–1716, 2002. View at: Publisher Site | Google Scholar
  66. Y. Olmos, J. J. Brosens, and E. W. F. Lam, “Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer,” Drug Resistance Updates, vol. 14, no. 1, pp. 35–44, 2011. View at: Publisher Site | Google Scholar
  67. B. Peck, C. Y. Chen, K. K. Ho et al., “SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2,” Molecular Cancer Therapeutics, vol. 9, no. 4, pp. 844–855, 2010. View at: Publisher Site | Google Scholar
  68. E. Lara, A. Mai, V. Calvanese et al., “Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect,” Oncogene, vol. 28, no. 6, pp. 781–791, 2009. View at: Publisher Site | Google Scholar
  69. K. W. Kang, M. K. Chun, O. Kim et al., “Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy,” Nanomedicine, vol. 6, no. 2, pp. 210–213, 2010. View at: Publisher Site | Google Scholar
  70. S. Aryal, C. M. J. Hu, and L. Zhang, “Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery,” ACS Nano, vol. 4, no. 1, pp. 251–258, 2010. View at: Publisher Site | Google Scholar
  71. E. B. Dickerson, W. H. Blackburn, M. H. Smith, L. B. Kapa, L. A. Lyon, and J. F. McDonald, “Chemosensitization of cancer cells by siRNA using targeted nanogel delivery,” BMC Cancer, vol. 10, article 10, 2010. View at: Publisher Site | Google Scholar
  72. J. Cheng, J. Wang, B. Chen et al., “A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin,” International Journal of Nanomedicine, vol. 6, pp. 2123–2131, 2011. View at: Google Scholar
  73. J. Klostergaard and C. E. Seeney, “Magnetic nanovectors for drug delivery,” Nanomedicine, vol. 73, supplement 1, pp. S37–S50, 2012. View at: Google Scholar
  74. T. Zhang, L. Qian, M. Tang et al., “Evaluation on cytotoxicity and genotoxicity of the L-glutamic acid coated iron oxide nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 3, pp. 2866–2873, 2012. View at: Google Scholar
  75. V. P. Torchilin, “Micellar nanocarriers: pharmaceutical perspectives,” Pharmaceutical Research, vol. 24, no. 1, pp. 1–16, 2007. View at: Publisher Site | Google Scholar
  76. T. Kiziltepe, J. D. Ashley, J. F. Stefanick et al., “Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo,” Blood Cancer Journal, vol. 2, no. 4, article e64, 2012. View at: Google Scholar
  77. S. B. Lim, A. Banerjee, and H. Onyüksel, “Improvement of drug safety by the use of lipid-based nanocarriers,” Journal of Controlled Release, vol. 163, no. 1, pp. 34–45, 2012. View at: Google Scholar
  78. R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chemical Society Reviews, vol. 41, no. 7, pp. 2943–2970, 2012. View at: Google Scholar
  79. L. Vigderman and E. R. Zubarev, “Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules,” Advanced Drug Delivery Reviews. In press. View at: Google Scholar
  80. C. Di Guglielmo, J. De Lapuente, C. Porredon, D. Ramos-López, J. Sendra, and M. Borràs, “In vitro safety toxicology data for evaluation of gold nanoparticles-chronic cytotoxicity, genotoxicity and uptake,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 8, pp. 6185–6191, 2012. View at: Google Scholar
  81. J.-M Li, Y.-Y Wang, M.-X Zhao et al., “Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking,” Biomaterials, vol. 33, no. 9, pp. 2780–2790, 2012. View at: Google Scholar
  82. C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Advanced Drug Delivery Reviews. In press. View at: Google Scholar
  83. N. M. Zaki, A. Nasti, and N. Tirelli, “Nanocarriers for cytoplasmic delivery: cellular uptake and intracellular fate of chitosan and hyaluronic acid-coated chitosan nanoparticles in a phagocytic cell model,” Macromolecular Bioscience, vol. 11, no. 12, pp. 1747–1760, 2011. View at: Google Scholar
  84. A. Nasti, N. M. Zaki, P. De Leonardis et al., “Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation,” Pharmaceutical Research, vol. 26, no. 8, pp. 1918–1930, 2009. View at: Publisher Site | Google Scholar
  85. V. Mamaeva, C. Sahlgren, and M. Lindén, “Mesoporous silica nanoparticles in medicine-Recent advances,” Advanced Drug Delivery Reviews. In press. View at: Google Scholar
  86. T. Asefa and Z. Tao, “Biocompatibility of mesoporous silica nanoparticles,” Chemical Research in Toxicology. In press. View at: Publisher Site | Google Scholar
  87. C. Alabi, A. Vegas, and D. Anderson, “Attacking the genome: emerging siRNA nanocarriers from concept to clinic,” Current Opinion in Pharmacology, vol. 12, no. 4, pp. 427–433, 2012. View at: Google Scholar
  88. K. A. Howard, “Delivery of RNA interference therapeutics using polycation-based nanoparticles,” Advanced Drug Delivery Reviews, vol. 61, no. 9, pp. 710–720, 2009. View at: Publisher Site | Google Scholar
  89. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments,” Clinical Pharmacology & Therapeutics, vol. 83, no. 5, pp. 761–769, 2008. View at: Google Scholar
  90. A. Z. Wang, F. Gu, L. Zhang et al., “Biofunctionalized targeted nanoparticles for therapeutic applications,” Expert Opinion on Biological Therapy, vol. 8, no. 8, pp. 1063–1070, 2008. View at: Publisher Site | Google Scholar
  91. C.-M. J. Hu, S. Kaushal, H. S. T. Cao et al., “Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells,” Molecular Pharmaceutics, vol. 7, no. 3, pp. 914–920, 2010. View at: Publisher Site | Google Scholar
  92. C.-M. J. Hu and L. Zhang, “Nanoparticle-based combination therapy toward overcoming drug resistance in cancer,” Biochemical Pharmacology, vol. 83, no. 8, pp. 1104–1111, 2012. View at: Google Scholar
  93. A. Shapira, Y. D. Livney, H. J. Broxterman, and Y. G. Assaraf, “Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance,” Drug Resistance Updates, vol. 14, no. 3, pp. 150–163, 2011. View at: Publisher Site | Google Scholar
  94. S. Dufort, L. Sancey, and J.-L Coll, “Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution,” Advanced Drug Delivery Reviews, vol. 64, no. 2, pp. 179–189, 2012. View at: Google Scholar
  95. A. Bitar, N. M. Ahmad, H. Fessi, and A. Elaissari, “Silica-based nanoparticles for biomedical applications,” Drug Discovery Today, vol. 17, no. 19-20, pp. 1147–1154, 2012. View at: Google Scholar
  96. V. Saxena and M. D. Hussain, “Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer,” International Journal of Nanomedicine, vol. 7, pp. 713–721, 2012. View at: Google Scholar
  97. G. Navarro, R. R. Sawant, S. Biswas et al., “P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells,” Nanomedicine, vol. 7, no. 1, pp. 65–78, 2012. View at: Google Scholar
  98. Y. Jin, S. Liu, B. Yu et al., “Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide—based therapeutic strategy in acute myeloid leukemia,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 196–206, 2010. View at: Publisher Site | Google Scholar
  99. A. D. Steg, A. A. Katre, B. Goodman et al., “Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer,” Clinical Cancer Research, vol. 17, no. 17, pp. 5674–5685, 2011. View at: Google Scholar
  100. O. Osman, L. F. Zanini, M. Frénéa-Robin et al., “Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources,” Biomed Microdevices, vol. 14, no. 5, pp. 947–954, 2012. View at: Google Scholar
  101. A. Singh, F. Dilnawaz, and S. K. Sahoo, “Long circulating lectin conjugated paclitaxel loaded magnetic nanoparticles: a new theranostic avenue for leukemia therapy,” PLoS ONE, vol. 6, no. 11, Article ID e26803, 2011. View at: Google Scholar
  102. E. C. Dreaden, B. E. Gryder, L. A. Austin et al., “Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells,” Bioconjugate chemistry, vol. 23, no. 8, pp. 1507–1512, 2012. View at: Publisher Site | Google Scholar
  103. C. Tomuleasa, O. Soritau, A. Orza et al., “Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells,” Journal of Gastrointestinal and Liver Diseases, vol. 21, no. 2, pp. 187–196, 2012. View at: Google Scholar
  104. W. Punfa, S. Yodkeeree, P. Pitchakarn, C. Ampasavate, and P. Limtrakul, “Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells,” Acta Pharmacologica Sinica, vol. 33, no. 6, pp. 823–831, 2012. View at: Google Scholar
  105. D. Pramanik, N. R. Campbell, S. Das et al., “A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy,” Oncotarget, vol. 3, no. 6, pp. 640–650, 2012. View at: Google Scholar
  106. M. Das and S. K. Sahoo, “Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance,” PLoS ONE, vol. 7, no. 3, Article ID e32920, 2012. View at: Google Scholar
  107. B. Li, H. Xu, Z. Li et al., “Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies,” International Journal of Nanomedicine, vol. 7, pp. 187–197, 2012. View at: Google Scholar
  108. L. Milane, Z. Duan, and M. Amiji, “Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer,” PLoS ONE, vol. 6, no. 9, Article ID e24075., 2011. View at: Google Scholar
  109. J. Shen, Q. Yin, L. Chen, Z. Zhang, and Y. Li, “Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer,” Biomaterials, vol. 33, no. 33, pp. 8613–8624, 2012. View at: Google Scholar
  110. H. B. Nair, S. Huffman, P. Veerapaneni et al., “Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 5, pp. 3789–3799, 2011. View at: Google Scholar
  111. Y. Chen, S. R. Bathula, J. Li, and L. Huang, “Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22639–22650, 2010. View at: Publisher Site | Google Scholar
  112. I.-P. Huang, S.-P. Sun, S. H. Cheng et al., “Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance,” Molecular Cancer Therapeutics, vol. 10, no. 5, pp. 761–769, 2011. View at: Publisher Site | Google Scholar

Copyright © 2012 Duncan Ayers and Alessandro Nasti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.