Table of Contents Author Guidelines Submit a Manuscript
International Journal of Experimental Diabetes Research
Volume 2, Issue 3, Pages 233-244

Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

Department of Pharmacology, Institute of Pharmaceutical Chemistry, University of Münster, Hittorfstr. 58-62, Münster 48149, Germany

Received 3 May 2001; Accepted 21 August 2001

Copyright © 2001 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.