Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2008, Article ID 429274, 7 pages
http://dx.doi.org/10.1155/2008/429274
Research Article

Transthyretin and Amyloid in the Islets of Langerhans in Type-2 Diabetes

1Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
2Department of Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden

Received 31 January 2008; Revised 7 May 2008; Accepted 3 July 2008

Academic Editor: Steven E. Kahn

Copyright © 2008 Gunilla T. Westermark and Per Westermark. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Westermark, “Islet amyloid polypeptide and amyloid in the islets of Langerhans,” in Diabetes: Clinical Science in Practice, R. D. G. Leslie and D. Robbins, Eds., pp. 189–199, Cambridge University Press, Cambridge, UK, 1995. View at Google Scholar
  2. P. Westermark and L. Grimelius, “The pancreatic islet cells in insular amyloidosis in human diabetic and non diabetic adults,” Acta Pathologica et Microbiologica Scandinavica A, vol. 81, no. 3, pp. 291–300, 1973. View at Google Scholar
  3. A. Clark, C. A. Wells, I. D. Buley et al., “Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes,” Diabetes Research, vol. 9, no. 4, pp. 151–159, 1988. View at Google Scholar
  4. P. Westermark, Z.-C. Li, G. T. Westermark, A. Leckström, and D. F. Steiner, “Effects of beta cell granule components on human islet amyloid polypeptide fibril formation,” FEBS Letters, vol. 379, no. 3, pp. 203–206, 1996. View at Publisher · View at Google Scholar
  5. S. Janciauskiene, S. Eriksson, E. Carlemalm, and B. Ahrén, “B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro,” Biochemical and Biophysical Research Communications, vol. 236, no. 3, pp. 580–585, 1997. View at Publisher · View at Google Scholar
  6. Y. C. Kudva, C. Mueske, P. C. Butler, and N. L. Eberhardt, “A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation,” Biochemical Journal, vol. 331, part 3, pp. 809–813, 1998. View at Google Scholar
  7. T. Sanke, T. Hanabusa, Y. Nakano et al., “Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients,” Diabetologia, vol. 34, no. 2, pp. 129–132, 1991. View at Publisher · View at Google Scholar
  8. C. B. Verchere, D. A. D'Alessio, R. D. Palmiter et al., “Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, pp. 3492–3496, 1996. View at Publisher · View at Google Scholar
  9. J. W. M. Höppener, C. Oosterwijk, M. G. Nieuwenhuis et al., “Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model,” Diabetologia, vol. 42, no. 4, pp. 427–434, 1999. View at Publisher · View at Google Scholar
  10. G. T. Westermark, S. Gebre-Medhin, D. F. Steiner, and P. Westermark, “Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP,” Molecular Medicine, vol. 6, no. 12, pp. 998–1007, 2000. View at Google Scholar
  11. P. Westermark, M. D. Benson, J. N. Buxbaum et al., “A primer of amyloid nomenclature,” Amyloid, vol. 14, no. 3, pp. 179–183, 2007. View at Publisher · View at Google Scholar
  12. J. T. Jarrett and P. T. Lansbury Jr., “Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?” Cell, vol. 73, no. 6, pp. 1055–1058, 1993. View at Publisher · View at Google Scholar
  13. J.-C. Rochet and P. T. Lansbury Jr., “Amyloid fibrillogenesis: themes and variations,” Current Opinion in Structural Biology, vol. 10, no. 1, pp. 60–68, 2000. View at Publisher · View at Google Scholar
  14. C. M. Dobson, “Principles of protein folding, misfolding and aggregation,” Seminars in Cellular and Developmental Biology, vol. 15, no. 1, pp. 3–16, 2004. View at Publisher · View at Google Scholar
  15. M. R. H. Krebs, L. A. Morozova-Roche, K. Daniel, C. V. Robinson, and C. M. Dobson, “Observation of sequence specificity in the seeding of protein amyloid fibrils,” Protein Science, vol. 13, no. 7, pp. 1933–1938, 2004. View at Publisher · View at Google Scholar
  16. B. O'Nuallain, A. D. Williams, P. Westermark, and R. Wetzel, “Seeding specificity in amyloid growth induced by heterologous fibrils,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17490–17499, 2004. View at Publisher · View at Google Scholar
  17. K. Johan, G. T. Westermark, U. Engström, Å. Gustavsson, P. Hultman, and P. Westermark, “Acceleration of amyloid protein A amyloidosis by amyloid-like synthetic fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2558–2563, 1998. View at Publisher · View at Google Scholar
  18. Y. Xing, A. Nakamura, T. Chiba et al., “Transmission of mouse senile amyloidosis,” Laboratory Investigation, vol. 81, no. 4, pp. 493–499, 2001. View at Google Scholar
  19. B. Jacobsson, T. Pettersson, B. Sandstedt, and A. Carlström, “Prealbumin in the islets of Langerhans,” IRCS Medical Science, vol. 7, no. 12, p. 590, 1979. View at Google Scholar
  20. C. Cras-Méneur, H. Inoue, Y. Zhou et al., “An expression profile of human pancreatic islet mRNAs by serial analysis of gene expression (SAGE),” Diabetologia, vol. 47, no. 2, pp. 284–299, 2004. View at Publisher · View at Google Scholar
  21. L. H. Connors, A. Lim, T. Prokaeva, V. A. Roskens, and C. E. Costello, “Tabulation of human transthyretin (TTR) variants, 2003,” Amyloid, vol. 10, no. 3, pp. 160–184, 2003. View at Google Scholar
  22. P. Felding and G. Fex, “Cellular origin of prealbumin in the rat,” Biochimica et Biophysica Acta, vol. 716, no. 3, pp. 446–449, 1982. View at Google Scholar
  23. P. W. Dickson, G. J. Howlett, and G. Schreiber, “Rat transthyretin (prealbumin). Molecular cloning, nucleotide sequence, and gene expression in liver and brain,” Journal of Biological Chemistry, vol. 260, no. 13, pp. 8214–8219, 1985. View at Google Scholar
  24. M. Kato, K. Kato, W. S. Blaner, B. S. Chertow, and D. S. Goodman, “Plasma and cellular retinoid-binding proteins and transthyretin (prealbumin) are all localized in the islets of Langerhans in the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 8, pp. 2488–2492, 1985. View at Publisher · View at Google Scholar
  25. B. Jacobsson, “In situ localization of transthyretin-mRNA in the adult human liver, choroid plexus and pancreatic islets and in endocrine tumours of the pancreas and gut,” Histochemistry, vol. 91, no. 4, pp. 299–304, 1989. View at Publisher · View at Google Scholar
  26. H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” Journal of Histochemistry and Cytochemistry, vol. 10, no. 6, pp. 355–364, 1962. View at Google Scholar
  27. L. Christmanson, C. Betsholtz, A. Leckström et al., “Islet amyloid polypeptide in the rabbit and European hare: studies on its relationship to amyloidogenesis,” Diabetologia, vol. 36, no. 3, pp. 183–188, 1993. View at Publisher · View at Google Scholar
  28. J. Bergström, C. Murphy, M. Eulitz et al., “Codeposition of apolipoprotein A-IV and transthyretin in senile systemic (ATTR) amyloidosis,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 903–908, 2001. View at Publisher · View at Google Scholar
  29. G. T. Westermark, L. Christmanson, G. Terenghi et al., “Islet amyloid polypeptide: demonstration of mRNA in human pancreatic islets by in situ hybridization in islets with and without amyloid deposits,” Diabetologia, vol. 36, no. 4, pp. 323–328, 1993. View at Google Scholar
  30. A. Lukinius, E. Wilander, G. T. Westermark, U. Engström, and P. Westermark, “Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets,” Diabetologia, vol. 32, no. 4, pp. 240–244, 1989. View at Publisher · View at Google Scholar
  31. P. Westermark, E. Wilander, G. T. Westermark, and K. H. Johnson, “Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals,” Diabetologia, vol. 30, no. 11, pp. 887–892, 1987. View at Google Scholar
  32. Z. Ma, G. T. Westermark, Z.-C. Li, U. Engström, and P. Westermark, “Altered immunoreactivity of islet amyloid polypeptide (IAPP) may reflect major modifications of the lapp molecule in amyloidogenesis,” Diabetologia, vol. 40, no. 7, pp. 793–801, 1997. View at Publisher · View at Google Scholar
  33. B. Jacobsson, V. P. Collins, L. Grimelius, T. Pettersson, B. Sandstedt, and A. Carlström, “Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets,” Journal of Histochemistry & Cytochemistry, vol. 37, no. 1, pp. 31–37, 1989. View at Google Scholar
  34. A. R. Hurshman, J. T. White, E. T. Powers, and J. W. Kelly, “Transthyretin aggregation under partially denaturing conditions s a downhill polymerization,” Biochemistry, vol. 43, no. 23, pp. 7365–7381, 2004. View at Publisher · View at Google Scholar
  35. T. Wisniewski, A. A. Golabek, E. Kida, K. E. Wisniewski, and B. Frangione, “Conformational mimicry in Alzheimer's disease: role of apolipoproteins in amyloidogenesis,” American Journal of Pathology, vol. 147, no. 2, pp. 238–244, 1995. View at Google Scholar