Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2009, Article ID 267107, 10 pages
http://dx.doi.org/10.1155/2009/267107
Research Article

Identification of Compounds That Inhibit IGF-I Signaling in Hyperglycemia

Division of Endocrinology, The University of North Carolina at Chapel Hill, NC 27599-7170, USA

Received 29 July 2009; Accepted 9 November 2009

Academic Editor: Thomas Forst

Copyright © 2009 Laura A. Maile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. I. Jones, T. Prevette, A. Gockerman, and D. R. Clemmons, “Ligand occupancy of the αVβ3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor I,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2482–2487, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Cercek, M. C. Fishbein, J. S. Forrester, R. H. Helfant, and J. A. Fagin, “Induction of insulin-like growth factor I messenger RNA in rat aorta after balloon denudation,” Circulation Research, vol. 66, no. 6, pp. 1755–1760, 1990. View at Google Scholar · View at Scopus
  3. P. Hayry, M. Myllarniemi, E. Aavik et al., “Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after carotid ballooning injury in the rat,” The FASEB Journal, vol. 9, no. 13, pp. 1336–1344, 1995. View at Google Scholar · View at Scopus
  4. P. H. Sonksen, D. Russell-Jones, and R. H. Jones, “Growth hormone and diabetes mellitus. A review of sixty-three years of medical research and a glimpse into the future?” Hormone Research, vol. 40, no. 1–3, pp. 68–79, 1993. View at Google Scholar · View at Scopus
  5. D. G. Dills, S. E. Moss, R. Klein, B. E. K. Klein, and M. Davis, “Is insulinlike growth factor I associated with diabetic retinopathy?” Diabetes, vol. 39, no. 2, pp. 191–195, 1990. View at Google Scholar · View at Scopus
  6. D. G. Dills, S. E. Moss, R. Klein, and B. E. K. Klein, “Association of elevated IGF-I levels with increased retinopathy in late-onset diabetes,” Diabetes, vol. 40, no. 12, pp. 1725–1730, 1991. View at Google Scholar · View at Scopus
  7. A. Flyvbjerg, S. M. Marshall, J. Frystyk et al., “Insulin-like growth factor I in initial renal hypertrophy in potassium-depleted rats,” American Journal of Physiology, vol. 262, no. 6, part 2, pp. F1023–F1031, 1992. View at Google Scholar · View at Scopus
  8. A. Flyvbjerg, K. E. Bornfeldt, H. Orskov, and H. J. Arnqvist, “Effect of insulin-like growth factor I infusion on renal hypertrophy in experimental diabetes mellitus in rats,” Diabetologia, vol. 34, no. 10, pp. 715–720, 1991. View at Google Scholar · View at Scopus
  9. A. Flyvbjerg, K. E. Bornfeldt, S. M. Marshall, H. J. Arnqvist, and H. Orskov, “Kidney IGF-I mRNA in initial renal hypertrophy in experimental diabetes in rats,” Diabetologia, vol. 33, no. 6, pp. 334–338, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Landau, E. Chin, C. Bondy et al., “Expression of insulin-like growth factor binding proteins in the rat kidney: effects of long-term diabetes,” Endocrinology, vol. 136, no. 5, pp. 1835–1842, 1995. View at Google Scholar · View at Scopus
  11. K. E. Bornfeldt, H. J. Arnqvist, B. Enberg, L. S. Mathews, and G. Norstedt, “Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues,” Journal of Endocrinology, vol. 122, no. 3, pp. 651–656, 1989. View at Google Scholar · View at Scopus
  12. A. Flyvbjerg, J. Frystyk, R. Osterby, and H. Orskov, “Kidney IGF-I and renal hypertrophy in GH-deficient diabetic dwarf rats,” American Journal of Physiology, vol. 262, no. 6, part 1, pp. E956–E962, 1992. View at Google Scholar · View at Scopus
  13. A. Flyvbjerg, O. Thorlacius-Ussing, R. Naeraa, J. Ingerslev, and H. Orskov, “Kidney tissue somatomedin C and initial renal growth in diabetic and uninephrectomised rats,” Diabetologia, vol. 31, no. 5, pp. 310–314, 1988. View at Google Scholar · View at Scopus
  14. A. Flyvbjerg, J. Frystyk, O. Thorlacius-Ussing, and H. Orskov, “Somatostatin analogue administration prevents increase in kidney somatomedin C and initial renal growth in diabetic and uninephrectomized rats,” Diabetologia, vol. 32, no. 4, pp. 261–265, 1989. View at Google Scholar · View at Scopus
  15. A. Flyvbjerg and H. Orskov, “Kidney tissue insulin-like growth factor I and initial renal growth in diabetic rats: relation to severity of diabetes,” Acta Endocrinologica, vol. 122, no. 3, pp. 374–378, 1990. View at Google Scholar · View at Scopus
  16. J. Haylor, H. Hickling, E. E. L. Eter et al., “JB3, an IGF-I receptor antagonist, inhibits early renal growth in diabetic and uninephrectomized rats,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 2027–2035, 2000. View at Google Scholar · View at Scopus
  17. W. B. Kannel and D. L. McGee, “Diabetes and cardiovascular risk factors: the Framingham study,” Circulation, vol. 59, no. 1, pp. 8–13, 1979. View at Google Scholar · View at Scopus
  18. S. P. Laing, A. J. Swerdlow, S. D. Slater et al., “Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes,” Diabetologia, vol. 46, no. 6, pp. 760–765, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. E. Moss, R. Klein, and B. E. K. Klein, “Cause-specific mortality in a population-based study of diabetes,” American Journal of Public Health, vol. 81, no. 9, pp. 1158–1162, 1991. View at Google Scholar · View at Scopus
  20. D. M. Nathan, J. Lachin, P. Cleary et al., “Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus,” The New England Journal of Medicine, vol. 348, no. 23, pp. 2294–2303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993. View at Publisher · View at Google Scholar
  22. D. M. Nathan, P. A. Cleary, J.-Y. C. Backlund et al., “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2643–2653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. P. Aiello, T. W. Gardner, G. L. King et al., “Diabetic retinopathy,” Diabetes Care, vol. 21, no. 1, pp. 143–156, 1998. View at Google Scholar · View at Scopus
  24. C. G. Schalkwijk and C. D. A. Stehouwer, “Vascular complications in diabetes mellitus: the role of endothelial dysfunction,” Clinical Science, vol. 109, no. 2, pp. 143–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Ross, “The pathogenesis of atherosclerosis: a perspective for the 1990s,” Nature, vol. 362, no. 6423, pp. 801–809, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Maile, B. E. Capps, Y. Ling, G. Xi, and D. R. Clemmons, “Hyperglycemia alters the responsiveness of smooth muscle cells to insulin-like growth factor-I,” Endocrinology, vol. 148, no. 5, pp. 2435–2443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Maile, J. Badley-Clarke, and D. R. Clemmons, “The association between integrin-associated protein and SHPS-1 regulates insulin-like growth factor-I receptor signaling in vascular smooth muscle cells,” Molecular Biology of the Cell, vol. 14, no. 9, pp. 3519–3528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Maile and D. R. Clemmons, “Regulation of insulin-like growth factor I receptor dephosphorylation by SHPS-1 and the tyrosine phosphatase SHP-2,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 8955–8960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Ling, L. A. Maile, J. Lieskovska, J. Badley-Clarke, and D. R. Clemmons, “Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells,” Molecular Biology of the Cell, vol. 16, no. 7, pp. 3353–3364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. E. C. Miller, B. E. Capps, R. R. Sanghani, D. R. Clemmons, and L. A. Maile, “Regulation of IGF-I signaling in retinal endothelial cells by hyperglycemia,” Investigative Ophthalmology and Visual Science, vol. 48, no. 8, pp. 3878–3887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Maile, B. E. Capps, E. C. Miller et al., “Glucose regulation of integrin-associated protein cleavage controls the response of vascular smooth muscle cells to insulin-like growth factor-I,” Molecular Endocrinology, vol. 22, no. 5, pp. 1226–1237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Maile, B. E. Capps, E. C. Miller, A. W. Aday, and D. R. Clemmons, “IAP association with SHPS-1 regulates IGF-I signaling in vivo,” Diabetes, vol. 57, pp. 2637–2643, 2008. View at Google Scholar
  33. L. A. Maile and D. R. Clemmons, “Integrin-associated protein binding domain of thrombospondin-1 enhances insulin-like growth factor-I receptor signaling in vascular smooth muscle cells,” Circulation Research, vol. 93, no. 10, pp. 925–931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. L. A. Maile, W. H. Busby, K. Sitko et al., “Insulin-like growth factor-I signaling in smooth muscle cells is regulated by ligand binding to the C177YDMKTTC184 sequence of the ß3-subunit of Vß3,” Molecular Endocrinology, vol. 20, no. 2, pp. 405–413, 2006. View at Publisher · View at Google Scholar
  35. R. Ross, “The smooth muscle cell—II: growth of smooth muscle in culture and formation of elastic fibers,” Journal of Cell Biology, vol. 50, no. 1, pp. 172–186, 1971. View at Google Scholar · View at Scopus
  36. T.-J. Nam, W. H. Busby Jr., C. Rees, and D. R. Clemmons, “Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-I-stimulated cell growth,” Endocrinology, vol. 141, no. 3, pp. 1100–1106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. Center For Disease Control and Prevention, General Information and National Estimates on Diabetes in the United States, US Department of Health and Human Services National Diabetes Fact Sheet, 2005.
  38. R. A. DeFronzo and E. Ferrannini, “Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease,” Diabetes Care, vol. 14, no. 3, pp. 173–194, 1991. View at Google Scholar · View at Scopus
  39. R. M. Krauss, “Lipids and lipoproteins in patients with type 2 diabetes,” Diabetes Care, vol. 27, no. 6, pp. 1496–1504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. H. Saydah, J. Fradkin, and C. C. Cowie, “Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes,” Journal of the American Medical Association, vol. 291, no. 3, pp. 335–342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. The Second Report of Diabetic Retinopathy Study Findings, “Photocoagulation treatment of diabetic retinopathy,” Ophthalmology, vol. 85, pp. 82–106, 1978. View at Google Scholar
  42. Diabetic Retinopathy Vitrectomy Study Report 5, “Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy: four year results of randomized trial,” Archives of Ophthalmology, vol. 102, pp. 647–661, 1990. View at Google Scholar
  43. Diabetes Control and Complications Trial Research Group, “Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial,” Ophthalmology, vol. 102, pp. 647–661, 1995. View at Google Scholar
  44. UK Prospective Diabetes Study Group, “Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes UKPDS38,” British Medical Journal, vol. 317, pp. 703–713, 1998. View at Google Scholar
  45. M. J. Tolentino, J. W. Miller, E. S. Gragoudas et al., “Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate,” Ophthalmology, vol. 103, no. 11, pp. 1820–1828, 1996. View at Google Scholar · View at Scopus
  46. P. A. Campochiaro, “Targeted pharmacotherapy of retinal diseases with ranibizumab,” Drugs of Today, vol. 43, no. 8, pp. 529–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. P. Aiello, A. Clermont, V. Arora, M. D. Davis, M. J. Sheetz, and S.-E. Bursell, “Inhibition of PKC β by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients,” Investigative Ophthalmology and Visual Science, vol. 47, no. 1, pp. 86–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Kirkegaard, K. Norgaard, O. Snorgaard, T. Bek, M. Larsen, and H. Lun-Anderson, “Effect of one year continuous subcutaneous infusion of a somatostatin analogue, octreotide, on early retinopathy, metabolic control and thyroid function in type 1 (insulin dependent) diabetes mellitus,” Acta Endocrinologica, vol. 122, pp. 766–772, 1990. View at Google Scholar
  49. H. Sato, T. Takino, Y. Okada et al., “A matrix metalloproteinase expressed on the surface of invasive tumour cells,” Nature, vol. 370, no. 6484, pp. 61–65, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Y. Strongin, I. Collier, G. Bannikov, B. L. Marmer, G. A. Grant, and G. I. Goldberg, “Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease,” Journal of Biological Chemistry, vol. 270, no. 10, pp. 5331–5338, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Okada, J.-P. Belloco, N. Rouyer et al., “Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2730–2734, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Y. Strongin, B. L. Marmer, G. A. Grant, and G. I. Goldberg, “Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2,” Journal of Biological Chemistry, vol. 268, no. 19, pp. 14033–14039, 1993. View at Google Scholar · View at Scopus
  53. G. I. Goldberg, B. L. Marmer, G. A. Grant, A. Z. Eisen, S. Wilhelm, and C. He, “Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 21, pp. 8207–8211, 1989. View at Google Scholar · View at Scopus
  54. S. Hernandez-Barrantes, M. Toth, M. M. Bernardo et al., “Binding of active (57?kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation,” Journal of Biological Chemistry, vol. 275, no. 16, pp. 12080–12089, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. J. Caterina, S. Yamada, N. C. M. Caterina et al., “Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation,” Journal of Biological Chemistry, vol. 275, no. 34, pp. 26416–26422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Wang, R. Juttermann, and P. D. Soloway, “TIMP-2 is required for efficient activation of proMMP-2 in vivo,” Journal of Biological Chemistry, vol. 275, no. 34, pp. 26411–26415, 2000. View at Publisher · View at Google Scholar · View at Scopus