Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2011, Article ID 851280, 10 pages
http://dx.doi.org/10.1155/2011/851280
Research Article

Effect of Exposure of Human Monocyte-Derived Macrophages to High, versus Normal, Glucose on Subsequent Lipid Accumulation from Glycated and Acetylated Low-Density Lipoproteins

1Free Radical Group, The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
2Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
3Gene Regulation Group, The Heart Research Institute, Sydney, NSW 2042, Australia
4School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW 2007, Australia

Received 10 May 2011; Revised 29 June 2011; Accepted 1 July 2011

Academic Editor: Mark A. Yorek

Copyright © 2011 Fatemeh Moheimani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organisation, “Diabetes,” Fact Sheet No. 312, 2006.
  2. A. J. Jenkins, J. D. Best, R. L. Klein, and T. J. Lyons, “Lipoproteins, glycoxidation and diabetic angiopathy,” Diabetes/Metabolism Research and Reviews, vol. 20, no. 5, pp. 349–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Diabetes Control and Complications Trial, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2643–2655, 2005. View at Publisher · View at Google Scholar
  4. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. O'Brien, A. Siraki, and N. Shangari, “Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health,” Critical Reviews in Toxicology, vol. 35, no. 7, pp. 609–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lapolla, R. Flamini, A. D. Vedova et al., “Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 9, pp. 1166–1173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. T. W. C. Lo, T. Selwood, and P. J. Thornalley, “The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins,” Biochemical Pharmacology, vol. 48, no. 10, pp. 1865–1870, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Knott, B. E. Brown, M. J. Davies, and R. T. Dean, “Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes: formation of modified and oxidized particles,” European Journal of Biochemistry, vol. 270, no. 17, pp. 3572–3582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, “Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 1, pp. 333–337, 1979. View at Google Scholar · View at Scopus
  11. K. J. Moore and M. W. Freeman, “Scavenger receptors in atherosclerosis: beyond lipid uptake,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1702–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Plüddemann, C. Neyen, and S. Gordon, “Macrophage scavenger receptors and host-derived ligands,” Methods, vol. 43, no. 3, pp. 207–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. J. Lyons, “Lipoprotein glycation and its metabolic consequences,” Diabetes, vol. 41, supplement 2, pp. 67–73, 1992. View at Google Scholar · View at Scopus
  14. B. E. Brown, R. T. Dean, and M. J. Davies, “Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells,” Diabetologia, vol. 48, no. 2, pp. 361–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Brown, I. Rashid, D. M. van Reyk, and M. J. Davies, “Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages,” Federation of European Biochemical Societies Journal, vol. 274, no. 6, pp. 1530–1541, 2007. View at Publisher · View at Google Scholar
  16. E. Griffin, A. Re, N. Hamel et al., “A link between diabetes and atherosclerosis: glucose regulates expression of CD36 at the level of translation,” Nature Medicine, vol. 7, no. 7, pp. 840–846, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Li, T. Sawamura, and G. Renier, “Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation,” Circulation Research, vol. 94, no. 7, pp. 892–901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Fukuhara-Takaki, M. Sakai, Y. I. Sakamoto, M. Takeya, and S. Horiuchi, “Expression of class A scavenger receptor is enhanced by high glucose in vitro and under diabetic conditions in vivo: one mechanism for an increased rate of atherosclerosis in diabetes,” Journal of Biological Chemistry, vol. 280, no. 5, pp. 3355–3364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. K. J. Moore, V. V. Kunjathoor, S. L. Koehn et al., “Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2192–2201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. V. R. Babaev, L. A. Gleaves, K. J. Carter et al., “Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 12, pp. 2593–2599, 2000. View at Google Scholar · View at Scopus
  21. M. Febbraio, E. Guy, and R. L. Silverstein, “Stem Cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 12, pp. 2333–2338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Daugherty, N. Kosswig, J. A. Cornicelli, S. C. Whitman, S. Wolle, and D. L. Rateri, “Macrophage-specific expression of class A scavenger receptors enhances granuloma formation in the absence of increased lipid deposition,” Journal of Lipid Research, vol. 42, no. 7, pp. 1049–1055, 2001. View at Google Scholar · View at Scopus
  23. S. C. Whitman, D. L. Rateri, S. J. Szilvassy, J. A. Cornicelli, and A. Daugherty, “Macrophage-specific expression of class A scavenger receptors in LDL receptor(-/-) mice decreases atherosclerosis and changes spleen morphology,” Journal of Lipid Research, vol. 43, no. 8, pp. 1201–1208, 2002. View at Google Scholar · View at Scopus
  24. N. Herijgers, M. P. J. de Winther, M. van Eck et al., “Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knockout mice,” Journal of Lipid Research, vol. 41, no. 9, pp. 1402–1409, 2000. View at Google Scholar · View at Scopus
  25. B. Garner, R. T. Dean, and W. Jessup, “Human macrophage-mediated oxidation of low-density lipoprotein is delayed and independent of superoxide production,” Biochemical Journal, vol. 301, no. 2, pp. 421–428, 1994. View at Google Scholar · View at Scopus
  26. B. E. Brown, F. M. Mahroof, N. L. Cook, D. M. van Reyk, and M. J. Davies, “Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins,” Diabetologia, vol. 49, no. 4, pp. 775–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Rashid, D. M. van Reyk, and M. J. Davies, “Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro,” Federation of European Biochemical Societies Letters, vol. 581, no. 5, pp. 1067–1070, 2007. View at Publisher · View at Google Scholar
  28. H. Suzuki, Y. Kurihara, M. Takeya et al., “A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection,” Nature, vol. 386, no. 6622, pp. 292–296, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. M. E. Haberland, C. L. Olch, and A. M. Folgelman, “Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages,” Journal of Biological Chemistry, vol. 259, no. 18, pp. 11305–11311, 1984. View at Google Scholar · View at Scopus
  30. Y. Jinnouchi, H. Sano, R. Nagai et al., “Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor,” Journal of Biochemistry, vol. 123, no. 6, pp. 1208–1217, 1998. View at Google Scholar · View at Scopus
  31. S. R. Thorpe and J. W. Baynes, “Maillard reaction products in tissue proteins: new products and new perspectives,” Amino Acids, vol. 25, no. 3-4, pp. 275–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Nagai, K. Mera, K. Nakajou et al., “The ligand activity of AGE-proteins to scavenger receptors is dependent on their rate of modification by AGEs,” Biochimica et Biophysica Acta, vol. 1772, no. 11-12, pp. 1192–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. J. Thornalley, A. Langborg, and H. S. Minhas, “Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose,” Biochemical Journal, vol. 344, no. 1, pp. 109–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Odani, T. Shinzato, Y. Matsumoto, J. Usami, and K. Maeda, “Increase in three α,β-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction,” Biochemical and Biophysical Research Communications, vol. 256, no. 1, pp. 89–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. A. C. McLellan, S. A. Phillips, and P. J. Thornalley, “The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene,” Analytical Biochemistry, vol. 206, no. 1, pp. 17–23, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. T. W. C. Lo, M. E. Westwood, A. C. McLellan, T. Selwood, and P. J. Thornalley, “Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with Nα-acetylarginine, Nα- acetylcysteine, and Nα-acetyllysine, and bovine serum albumin,” Journal of Biological Chemistry, vol. 269, no. 51, pp. 32299–32305, 1994. View at Google Scholar · View at Scopus
  37. R. Nagai, K. Matsumoto, X. Ling, H. Suzuki, T. Araki, and S. Horiuchi, “Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor,” Diabetes, vol. 49, no. 10, pp. 1714–1723, 2000. View at Google Scholar · View at Scopus
  38. N. Ohgami, R. Nagai, A. Miyazaki et al., “Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products,” Journal of Biological Chemistry, vol. 276, no. 16, pp. 13348–13355, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Jono, A. Miyazaki, R. Nagai, T. Sawamura, T. Kitamura, and S. Horiuchi, “Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE),” Federation of European Biochemical Societies Letters, vol. 511, no. 1–3, pp. 170–174, 2002. View at Publisher · View at Google Scholar
  40. P. J. Thornalley, “Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy,” General Pharmacology, vol. 27, no. 4, pp. 565–573, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. S. L. Hazen, A. d'Avignon, M. M. Anderson, F. F. Hsu, and J. W. Heinecke, “Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize α-amino acids to a family of reactive aldehydes: mechanistic studies identifying labile intermediates along the reaction pathway,” Journal of Biological Chemistry, vol. 273, no. 9, pp. 4997–5005, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Zheng, B. Nukuna, M. L. Brennan et al., “Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and function impairment in subjects with cardiovascular disease,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 529–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Bergt, S. Pennathur, X. Fu et al., “The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 13032–13037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Suarna, R. T. Dean, J. May, and R. Stocker, “Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 10, pp. 1616–1624, 1995. View at Google Scholar · View at Scopus