Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 250621, 5 pages
http://dx.doi.org/10.1155/2012/250621
Research Article

Relation of Adiponectin to Glucose Tolerance Status, Adiposity, and Cardiovascular Risk Factor Load

1Department of Medicine, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
2Department of Biochemistry, Edith Wolfson Medical Center, Holon 58100, Israel
3Epidemiology and Research Unit, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
4Department of Endocrinology, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, P. O. Box 5, Holon 58100, Israel

Received 17 July 2011; Accepted 10 November 2011

Academic Editor: K. Khunti

Copyright © 2012 N. Wolfson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Stefan, B. Vozarova, T. Funahashi et al., “Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans,” Diabetes, vol. 51, no. 6, pp. 1884–1888, 2002. View at Google Scholar · View at Scopus
  2. T. Yokota, K. Oritani, I. Takahashi et al., “Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages,” Blood, vol. 96, no. 5, pp. 1723–1732, 2000. View at Google Scholar · View at Scopus
  3. N. Ouchi, S. Kihara, Y. Arita et al., “Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages,” Circulation, vol. 103, no. 8, pp. 1057–1063, 2001. View at Google Scholar · View at Scopus
  4. K. C. B. Tan, A. Xu, W. S. Chow et al., “Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 765–769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Shargorodsky, M. Boaz, Y. Goldberg et al., “Adiponectin and vascular properties in obese patients: is it a novel biomarker of early atherosclerosis,” International Journal of Obesity, vol. 33, no. 5, pp. 553–558, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Störk, M. L. Bots, P. Angerer et al., “Low levels of adiponectin predict worsening of arterial morphology and function,” Atherosclerosis, vol. 194, no. 2, pp. e147–e153, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. W. Koenig, N. Khuseyinova, J. Baumert, C. Meisinger, and H. Löwel, “Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men. Results from the 18-year follow-up of a large cohort from Southern Germany,” Journal of the American College of Cardiology, vol. 48, no. 7, pp. 1369–1377, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. Y. Iwashima, T. Katsuya, K. Ishikawa et al., “Hypoadiponectinemia is an independent risk factor for hypertension,” Hypertension, vol. 43, no. 6, pp. 1318–1323, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Hotta, T. Funahashi, Y. Arita et al., “Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1595–1599, 2000. View at Google Scholar · View at Scopus
  10. S. Genuth, K. G. Alberti, P. Bennett et al., “The expert committee on the diagnosis and classification of diabetes mellitus follow-up report on the diagnosis of diabetes mellitus,” Diabetes Care, vol. 26, pp. 3160–3167, 2003. View at Google Scholar
  11. L. L. Li, X. L. Kang, X. J. Ran et al., “Associations between 45T/G polymorphism of the adiponectin gene and plasma adiponectin levels with type 2 diabetes,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 12, pp. 1287–1290, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. M. Stumvoll, O. Tschritter, A. Fritsche et al., “Association of the T-G polymorphism in adiponectin (Exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 37–41, 2002. View at Google Scholar
  13. F. Pellmé, U. Smith, T. Funahashi et al., “Circulating adiponectin levels are reduced in nonobese but insulin-resistant first-degree relatives of type 2 diabetic patients,” Diabetes, vol. 2, no. 5, pp. 1182–1186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yamamoto, H. Hirose, I. Saito et al., “Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population,” Clinical Science, vol. 103, no. 2, pp. 137–142, 2002. View at Google Scholar · View at Scopus
  15. J. Hung, B. M. McQuillan, P. L. Thompson, and J. P. Beilby, “Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity,” International Journal of Obesity, vol. 32, no. 5, pp. 772–779, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. J. Krentz, D. V. Mühlen, and E. Barrett-Connor, “Adipocytokines, sex hormones, and cardiovascular risk factors in postmenopausal women: factor analysis of the Rancho Bernardo study,” Hormone and Metabolic Research, vol. 41, no. 10, pp. 773–777, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. G. Kim, H. Y. Kim, J. A. Seo et al., “Relationship between serum adiponectin concentration, pulse wave velocity and nonalcoholic fatty liver disease,” European Journal of Endocrinology, vol. 152, no. 2, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. B. Vozarova, N. Stefan, R. S. Lindsay et al., “High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes,” Diabetes, vol. 51, no. 6, pp. 1889–1895, 2002. View at Google Scholar · View at Scopus
  19. K. M. Choi, J. Lee, K. W. Lee et al., “Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans,” Clinical Endocrinology, vol. 61, no. 1, pp. 75–80, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. Lenchik, T. C. Register, F. C. Hsu et al., “Adiponectin as a novel determinant of bone mineral density and visceral fat,” Bone, vol. 33, no. 4, pp. 646–651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Matsubara, S. Maruoka, and S. Katayose, “Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women,” European Journal of Endocrinology, vol. 147, no. 2, pp. 173–180, 2002. View at Google Scholar · View at Scopus
  23. M. Kumada, S. Kihara, S. Sumitsuji et al., “Coronary artery disease association of hypoadiponectinemia with coronary artery disease in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, pp. 85–89, 2003. View at Google Scholar
  24. T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu, and E. B. Rimm, “Plasma adiponectin levels and risk of myocardial infarction in men,” Journal of the American Medical Association, vol. 291, no. 14, pp. 1730–1737, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. B. Schulze, I. Shai, E. B. Rimm, T. Li, N. Rifai, and F. B. Hu, “Adiponectin and future coronary heart disease events among men with type 2 diabetes,” Diabetes, vol. 54, no. 2, pp. 534–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Costacou, J. C. Zgibor, R. W. Evans et al., “The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh epidemiology of diabetes complications study,” Diabetologia, vol. 48, no. 1, pp. 41–48, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus