Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 892706, 11 pages
http://dx.doi.org/10.1155/2012/892706
Clinical Study

Dipeptidyl Peptidase 4 Inhibition May Facilitate Healing of Chronic Foot Ulcers in Patients with Type 2 Diabetes

1Department of Geriatrics and Metabolic Diseases, Second University of Naples, 80138 Naples, Italy
2Department of Internal and Experimental Medicine, Center of Cardiovascular Excellence, Second University of Naples, 80138 Naples, Italy
3Department of Geriatric Surgery, Second University of Naples, 80138 Naples, Italy
4Department of Biochemistry, Section of Pathology, Second University Naples, 80138 Naples, Italy
5Department of Pharmaceutical Sciences, University of Salerno, Salerno 84084, Italy

Received 1 June 2012; Revised 12 September 2012; Accepted 12 September 2012

Academic Editor: N. Cameron

Copyright © 2012 Raffaele Marfella et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. M. Boulton, “The diabetic foot: grand overview, epidemiology and pathogenesis,” Diabetes/Metabolism Research and Reviews, vol. 24, supplement 1, pp. S3–S6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist, “The global burden of diabetic foot disease,” The Lancet, vol. 366, no. 9498, pp. 1719–1724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. L. Bartus and D. J. Margolis, “Reducing the incidence of foot ulceration and amputation in diabetes,” Current Diabetes Reports, vol. 4, no. 6, pp. 413–418, 2004. View at Google Scholar · View at Scopus
  4. Y. Yamaguchi and K. Yoshikawa, “Cutaneous wound healing: an update,” Journal of Dermatology, vol. 28, no. 10, pp. 521–534, 2001. View at Google Scholar · View at Scopus
  5. S. O. Oyibo, E. B. Jude, I. Tarawneh et al., “The effects of ulcer size and site, patient's age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers,” Diabetic Medicine, vol. 18, no. 2, pp. 133–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Rafehi, A. El-Osta, and T. C. Karagiannis, “Genetic and epigenetic events in diabetic wound healing,” International Wound Journal, vol. 8, no. 1, pp. 12–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Macfarlane and W. J. Jeffcoate, “Factors contributing to presentation of diabetic foot ulcers,” Diabetic Medicine, vol. 14, no. 10, pp. 867–870, 1997. View at Publisher · View at Google Scholar
  8. P. Ruffieux, L. Hommel, and J. H. Saurat, “Long-term assessment of chronic leg ulcer treatment by autologous shin grafts,” Dermatology, vol. 195, no. 1, pp. 77–80, 1997. View at Google Scholar · View at Scopus
  9. A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing-more than a nutrient,” World Journal of Surgery, vol. 28, no. 3, pp. 294–300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. R. Knighton, I. A. Silver, and T. K. Hunt, “Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration,” Surgery, vol. 90, no. 2, pp. 262–270, 1981. View at Google Scholar · View at Scopus
  11. I. R. Botusan, V. G. Sunkari, O. Savu et al., “Stabilization of HIF-1α is critical to improve wound healing in diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19426–19431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. L. Semenza, “Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 809–812, 2000. View at Google Scholar · View at Scopus
  13. E. Chou, I. Suzuma, K. J. Way et al., “Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue,” Circulation, vol. 105, no. 3, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Marfella, K. Esposito, F. Nappo et al., “Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes,” Diabetes, vol. 53, no. 9, pp. 2383–2391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. B. Catrina, K. Okamoto, T. Pereira, K. Brismar, and L. Poellinger, “Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function,” Diabetes, vol. 53, no. 12, pp. 3226–3232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Shi, “Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke,” Current Medicinal Chemistry, vol. 16, no. 34, pp. 4593–4600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Xie-Yun, Z. H. Mo, K. Chen, H. H. He, and Y. H. Xie, “Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation,” Medical Science Monitor, vol. 17, no. 2, pp. BR35–BR41, 2011. View at Google Scholar · View at Scopus
  18. S. Van de Velde, M. F. Hogan, and M. Montminy, “mTOR links incretin signaling to HIF induction in pancreatic beta cells,” Proceedings of the National Academy of Sciences of the USA, vol. 108, no. 41, pp. 16876–16882, 2011. View at Publisher · View at Google Scholar
  19. R. J. Hinchliffe, G. D. Valk, J. Apelqvist et al., “A systematic review of the effectiveness of interventions to enhance the healing of chronic ulcers of the foot in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 24, supplement 1, pp. S119–S144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Grey, S. Enoch, and K. G. Harding, “Wound assessment,” British Medical Journal, vol. 332, no. 7536, pp. 285–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Pasquali, V. Rossi, S. Staibano et al., “The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: up-regulation of EG-VEGF/prokineticin 1 with malignancy,” Endocrinology, vol. 147, no. 9, pp. 4245–4251, 2006. View at Publisher · View at Google Scholar
  22. R. Marfella, F. C. Sasso, F. Cacciapuoti et al., “Tight glycemic control may increase regenerative potential of myocardium during acute infarction,” Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 3, pp. 933–942, 2012. View at Publisher · View at Google Scholar
  23. D. M. Stroka, T. Burkhardt, I. Desbaillets et al., “HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia,” The FASEB Journal, vol. 15, no. 13, pp. 2445–2453, 2001. View at Google Scholar
  24. P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nature Medicine, vol. 6, pp. 389–395, 2000. View at Publisher · View at Google Scholar
  25. B. H. Jiang, G. L. Semenza, C. Bauer, and H. H. Marti, “Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension,” American Journal of Physiology, vol. 271, no. 4, pp. C1172–C1180, 1996. View at Google Scholar · View at Scopus
  26. X. Kong, B. Alvarez-Castelao, Z. Lin, J. G. Castaño, and J. Caro, “Constitutive/hypoxic degradation of HIF-α proteins by the proteasome is independent of von Hippel Lindau protein ubiquitylation and the transactivation activity of the protein,” Journal of Biological Chemistry, vol. 282, no. 21, pp. 15498–15505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Ding, E. Dimayuga, and J. N. Keller, “Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 163–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Ciechanover, “The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting,” Neurology, vol. 66, supplement 1, pp. S7–S19, 2006. View at Google Scholar · View at Scopus
  29. R. Shringarpure, T. Grune, J. Mehlhase, and K. J. A. Davies, “Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 311–318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Ullrich, T. Reinheckel, N. Sitte, R. Hass, T. Grune, and K. J. A. Davies, “Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6223–6228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. C. F. Bento and P. Pereira, “Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes,” Diabetologia, vol. 54, no. 8, pp. 1946–1956, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Schurmann, A. Linke, K. Engelmann-Pilger et al., “2012The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 342, no. 1, pp. 71–80, 2012. View at Publisher · View at Google Scholar
  33. K. Bulut, J. J. Meier, N. Ansorge et al., “Glucagon-like peptide 2 improves intestinal wound healing through induction of epithelial cell migration in vitro-evidence for a TGF—β-mediated effect,” Regulatory Peptides, vol. 121, no. 1–3, pp. 137–143, 2004. View at Publisher · View at Google Scholar · View at Scopus