Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Experimental Diabetes Research
Volume 2012, Article ID 896362, 7 pages
http://dx.doi.org/10.1155/2012/896362
Research Article

Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression

1Department of Pediatrics, Herlev Hospital, 2730 Herlev, Denmark
2Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
3Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
4Department of Growth and Reproduction, Rigshospitalet and Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
5Glostrup Research Institute, Glostrup Hospital and Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 2600 Glostrup, Denmark
6Department of Statistics, University of Southern Denmark, 5000 Odense, Denmark

Received 13 February 2012; Revised 11 May 2012; Accepted 17 May 2012

Academic Editor: Anandwardhan Hardikar

Copyright © 2012 Lotte B. Nielsen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. H. Aly and P. Gottlieb, “The honeymoon phase: intersection of metabolism and immunology,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 4, pp. 286–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. T. Mendell, “MicroRNAs: critical regulators of development, cellular physiology and malignancy,” Cell Cycle, vol. 4, no. 9, pp. 1179–1184, 2005. View at Google Scholar · View at Scopus
  4. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. O. F. Laterza, L. Lim, P. W. Garrett-Engele et al., “Plasma microRNAs as sensitive and specific biomarkers of tissue injury,” Clinical Chemistry, vol. 55, no. 11, pp. 1977–1983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Lawrie, S. Gal, H. M. Dunlop et al., “Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 141, no. 5, pp. 672–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. Rayner, C. C. Esau, F. N. Hussain et al., “Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides,” Nature, vol. 478, no. 7369, pp. 404–407, 2011. View at Publisher · View at Google Scholar
  10. M. Trajkovski, J. Hausser, J. Soutschek et al., “MicroRNAs 103 and 107 regulate insulin sensitivity,” Nature, vol. 474, no. 7353, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. B. Mortensen, P. G. Swift, R. W. Holl et al., “Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis,” Pediatric Diabetes, vol. 11, no. 4, pp. 218–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Andersen, F. Vaziri-Sani, A. Delli et al., “Association between autoantibodies to the Arginine variant of the Zinc transporter 8 (ZnT8) and stimulated C-peptide levels in Danish children and adolescents with newly diagnosed type 1 diabetes,” Pediatric Diabetes. In press. View at Publisher · View at Google Scholar
  13. L. Aksglaede, K. Sørensen, J. H. Petersen, N. E. Skakkebæk, and A. Juul, “Recent decline in age at breast development: the Copenhagen puberty study,” Pediatrics, vol. 123, no. 5, pp. e932–e939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sørensen, L. Aksglaede, J. H. Petersen, and A. Juul, “Recent changes in pubertal timing in healthy Danish boys: associations with body mass index,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 263–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Fei, Y. Li, X. Zhu, and X. Luo, “MiR-181a post-transcriptionally downregulates oncogenic rala and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML),” PLoS ONE, vol. 7, no. 3, Article ID e32834, 2012. View at Publisher · View at Google Scholar
  16. W. Qin, Y. Shi, B. Zhao et al., “miR-24 regulates apoptosis by targeting the Open Reading Frame (ORF) region of FAF1 in cancer cells,” PLoS ONE, vol. 5, no. 2, Article ID e9429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Razumilava, S. F. Bronk, R. L. Smoot et al., “miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma,” Hepatology, vol. 55, no. 2, pp. 465–475, 2012. View at Publisher · View at Google Scholar
  18. Y. Fu, Y. Zhang, Z. Wang et al., “Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy,” American Journal of Nephrology, vol. 32, no. 6, pp. 581–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Bushati and S. M. Cohen, “miRNA functions,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 175–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zampetaki, S. Kiechl, I. Drozdov et al., “Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes,” Circulation Research, vol. 107, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Chan, A. C. Hilyard, C. Wu et al., “Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR-24 expression,” EMBO Journal, vol. 29, no. 3, pp. 559–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Y. Donath, J. Størling, K. Maedler, and T. Mandrup-Poulsen, “Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes,” Journal of Molecular Medicine, vol. 81, no. 8, pp. 455–470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Kong, J. Zhu, W. Han et al., “Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study,” Acta Diabetologica, vol. 48, no. 1, pp. 61–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Hu, J. Dong, L.-E. Wang et al., “Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls,” Carcinogenesis, vol. 33, no. 4, pp. 828–834, 2012. View at Publisher · View at Google Scholar
  26. Q. Wu, C. Wang, Z. Lu, L. Guo, and Q. Ge, “Analysis of serum genome-wide microRNAs for breast cancer detection,” Clinica Chimica Acta, vol. 413, no. 13-14, pp. 1058–1065, 2012. View at Publisher · View at Google Scholar
  27. L. M. Li, Z. B. Hu, Z. X. Zhou et al., “Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma,” Cancer Research, vol. 70, no. 23, pp. 9798–9807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Zhang, Z. Zuo, X. Lu, L. Wang, H. Wang, and Z. Zhu, “MiR-25 regulates apoptosis by targeting bim in human ovarian cancer,” Oncology Reports, vol. 27, no. 2, pp. 594–598, 2012. View at Publisher · View at Google Scholar