Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 143515, 5 pages
http://dx.doi.org/10.1155/2013/143515
Clinical Study

Impact of Serum Retinol-Binding Protein 4 Levels on Regulation of Remnant-Like Particles Triglyceride in Type 2 Diabetes Mellitus

1Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
2Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan

Received 25 December 2012; Accepted 12 February 2013

Academic Editor: Aristidis Veves

Copyright © 2013 Naoto Yamaaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Yang, T. E. Graham, N. Mody et al., “Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes,” Nature, vol. 436, no. 7049, pp. 356–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Klöting, T. E. Graham, J. Berndt et al., “Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass,” Cell Metabolism, vol. 6, no. 1, pp. 79–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. E. Graham, Q. Yang, M. Blüher et al., “Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects,” New England Journal of Medicine, vol. 354, no. 24, pp. 2552–2563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Takebayashi, M. Suetsugu, S. Wakabayashi, Y. Aso, and T. Inukai, “Retinol binding protein-4 levels and clinical features of type 2 diabetes patients,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 7, pp. 2712–2719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nakamura, J. E. Obata, M. Hirano et al., “Predictive value of remnant lipoprotein for cardiovascular events in patients with coronary artery disease after achievement of LDL-cholesterol goals,” Atherosclerosis, vol. 218, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar
  6. J. Pang, D. C. Chan, P. H. Barrett, and G. F. Watts, “Postprandial dyslipidaemia and diabetes: mechanistic and therapeutic aspects,” Current Opinion in Lipidology, vol. 23, no. 4, pp. 303–309, 2012. View at Publisher · View at Google Scholar
  7. M. Ohira, Y. Miyashita, M. Ebisuno et al., “Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients,” Diabetes Research and Clinical Practice, vol. 78, no. 1, pp. 34–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Shirai, Y. Itoh, H. Sasaki et al., “The effect of insulin sensitizer, troglitazone, on lipoprotein lipase mass in preheparin serum,” Diabetes Research and Clinical Practice, vol. 46, no. 1, pp. 35–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. Examination Committee of Criteria for ‘Obesity Disease’ in Japan and Japan Society for the Study of Obesity, “New criteria for ‘obesity disease’ in Japan,” Circulation Journal, vol. 66, no. 11, pp. 987–992, 2002. View at Publisher · View at Google Scholar
  10. R. Kahn, “Report of the expert committee on the diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 20, no. 7, pp. 1183–1197, 1997. View at Google Scholar · View at Scopus
  11. T. Yoshizumi, T. Nakamura, M. Yamane et al., “Abdominal fat: standardized technique for measurement at CT,” Radiology, vol. 211, no. 1, pp. 283–286, 1999. View at Google Scholar · View at Scopus
  12. J. Kobayashi, T. Maruyama, H. Watanabe et al., “Gender differences in the effect of type 2 diabetes on serum lipids, pre-heparin plasma lipoprotein lipase mass and other metabolic parameters in Japanese population,” Diabetes Research and Clinical Practice, vol. 62, no. 1, pp. 39–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. von Eynatten, P. M. Lepper, D. Liu et al., “Retinol-binding protein 4 is associated with components of the metabolic syndrome, but not with insulin resistance, in men with type 2 diabetes or coronary artery disease,” Diabetologia, vol. 50, no. 9, pp. 1930–1937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Verges, B. Guiu, J. P. Cercueil et al., “Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein b100 catabolism in type 2 diabetes mellitus,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 12, pp. 3050–3057, 2012. View at Publisher · View at Google Scholar
  15. S. C. Huang and Y. J. Yang, “Serum retinol-binding protein 4 is independently associated with pediatric NAFLD and fasting triglyceride level,” Journal of Pediatric Gastroenterology and Nutrition, vol. 56, no. 2, pp. 145–150, 2013. View at Publisher · View at Google Scholar
  16. Q. Qi, Z. Yu, X. Ye et al., “Elevated retinol-binding protein 4 levels are associated with metabolic syndrome in Chinese people,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4827–4834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Oka, J. Kobayashi, K. Yagi et al., “Reassessment of the cutoff values of waist circumference and visceral fat area for identifying Japanese subjects at risk for the metabolic syndrome,” Diabetes Research and Clinical Practice, vol. 79, no. 3, pp. 474–481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Kobayashi, K. Saito, I. Fukamachi et al., “Pre-heparin plasma lipoprotein lipase mass: correlation with intra-abdominal visceral fat accumulation,” Hormone and Metabolic Research, vol. 33, no. 7, pp. 412–416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. E. A. Nikkila, J. K. Huttunen, and C. Ehnholm, “Postheparin plasma lipoprotein lipase and hepatic lipase in diabetes mellitus. Relationship to plasma triglyceride metabolism,” Diabetes, vol. 26, no. 1, pp. 11–21, 1977. View at Google Scholar · View at Scopus
  20. J. Kobayashi, K. Nakajima, A. Nohara et al., “The relationship of serum lipoprotein lipase mass with fasting serum apolipoprotein B-48 and remnant-like particle triglycerides in type 2 diabetic patients,” Hormone and Metabolic Research, vol. 39, no. 8, pp. 612–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Nakano, Y. Tokita, T. Nagamine et al., “Measurement of serum remnant-like lipoprotein particle-triglyceride (RLP-TG) and RLP-TG/total TG ratio using highly sensitive triglyceride assay reagent,” Clinica Chimica Acta, vol. 412, no. 1-2, pp. 71–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Noy, “Retinoid-binding proteins: mediators of retinoid action,” Biochemical Journal, vol. 348, no. 3, pp. 481–495, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Vu-Dac, P. Gervois, I. P. Torra et al., “Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor: contribution to the hypertriglyceridemic action of retinoids,” Journal of Clinical Investigation, vol. 102, no. 3, pp. 625–632, 1998. View at Google Scholar · View at Scopus