Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 245271, 8 pages
http://dx.doi.org/10.1155/2013/245271
Research Article

Ethyl Pyruvate Inhibits Retinal Pathogenic Neovascularization by Downregulating HMGB1 Expression

Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea

Received 26 July 2013; Revised 18 October 2013; Accepted 8 November 2013

Academic Editor: Ronald G. Tilton

Copyright © 2013 Yun Mi Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Folkman, “Angiogenesis,” Annual Review of Medicine, vol. 57, pp. 1–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” The New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Schulze, K. Hoffmann, H. Boeing et al., “An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes,” Diabetes Care, vol. 30, no. 3, pp. 510–515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Joussen, V. Poulaki, M. L. Le et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” Federation of American Societies for Experimental Biology Journal, vol. 18, no. 12, pp. 1450–1452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Abu El-Asrar, S. Struyf, D. Kangave, K. Geboes, and J. Van Damme, “Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy,” European Cytokine Network, vol. 17, no. 3, pp. 155–165, 2006. View at Google Scholar · View at Scopus
  6. J. R. van Beijnum, W. A. Buurman, and A. W. Griffioen, “Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1),” Angiogenesis, vol. 11, no. 1, pp. 91–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. T. Lotze and K. J. Tracey, “High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal,” Nature Reviews Immunology, vol. 5, no. 4, pp. 331–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Jiang, J. Li, M. Gallowitsch-Puerta, K. J. Tracey, and D. S. Pisetsky, “The effects of CpG DNA on HMGB1 release by murine macrophage cell lines,” Journal of Leukocyte Biology, vol. 78, no. 4, pp. 930–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Treutiger, G. E. Mullins, A.-S. M. Johansson et al., “High mobility group 1 B-box mediates activation of human endothelium,” Journal of Internal Medicine, vol. 254, no. 4, pp. 375–385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. van Beijnum, P. Nowak-Sliwinska, E. van den Boezem, P. Hautvast, W. A. Buurman, and A. W. Griffioen, “Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1,” Oncogene, vol. 32, no. 3, pp. 363–374, 2013. View at Google Scholar · View at Scopus
  11. S. Mitola, M. Belleri, C. Urbinati et al., “Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine,” Journal of Immunology, vol. 176, no. 1, pp. 12–15, 2006. View at Google Scholar · View at Scopus
  12. A. M. Abu El-Asrar, M. I. Nawaz, D. Kangave, M. Abouammoh, and G. Mohammad, “High-mobility group box-1 and endothelial cell angiogenic markers in the vitreous from patients with proliferative diabetic retinopathy,” Mediators of Inflammation, vol. 2012, Article ID 697489, 7 pages, 2012. View at Publisher · View at Google Scholar
  13. A. M. A. El-Asrar, M. I. Nawaz, D. Kangave et al., “High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy,” Molecular Vision, vol. 17, pp. 1829–1838, 2011. View at Google Scholar · View at Scopus
  14. M. P. Fink, “Ethyl pyruvate: a novel anti-inflammatory agent,” Journal of Internal Medicine, vol. 261, no. 4, pp. 349–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Ulloa, M. Ochani, H. Yang et al., “Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12351–12356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S.-Y. Park, E.-Y. Yi, M. Jung, Y. M. Lee, and Y.-J. Kim, “Ethyl pyruvate, an anti-inflammatory agent, inhibits tumor angiogenesis through inhibition of the NF-κB signaling pathway,” Cancer Letters, vol. 303, no. 2, pp. 150–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Lei, S. Lin, C. Zhang et al., “Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage,” Neuroscience, vol. 229, pp. 12–19, 2013. View at Google Scholar
  18. L. E. H. Smith, E. Wesolowski, A. McLellan et al., “Oxygen-induced retinopathy in the mouse,” Investigative Ophthalmology and Visual Science, vol. 35, no. 1, pp. 101–111, 1994. View at Google Scholar · View at Scopus
  19. J. H. Kim, B. J. Lee, J. H. Kim, Y. S. Yu, and K.-W. Kim, “Anti-angiogenic effect of caffeic acid on retinal neovascularization,” Vascular Pharmacology, vol. 51, no. 4, pp. 262–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Guo, W. Liu, Z. Ju et al., “An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays,” Proteome Science, vol. 10, no. 1, pp. 56–67, 2012. View at Google Scholar
  21. K. Ishikawa, S. Yoshida, K. Kadota et al., “Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 4307–4319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Arimura, Y. Ki-I, T. Hashiguchi et al., “Intraocular expression and release of high-mobility group box 1 protein in retinal detachment,” Laboratory Investigation, vol. 89, no. 3, pp. 278–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. X. Zhang and J.-X. Ma, “Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy,” Progress in Retinal and Eye Research, vol. 26, no. 1, pp. 1–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Stahl, K. M. Connor, P. Sapieha et al., “The mouse retina as an angiogenesis model,” Investigative Ophthalmology and Visual Science, vol. 51, no. 6, pp. 2813–2826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Ozaki, M.-S. Seo, K. Ozaki et al., “Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization,” The American Journal of Pathology, vol. 156, no. 2, pp. 697–707, 2000. View at Google Scholar · View at Scopus
  27. G. K. Kolluru, S. C. Bir, and C. G. Kevil, “Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing,” International Journal of Vascular Medicine, vol. 2012, Article ID 918267, 30 pages, 2012. View at Publisher · View at Google Scholar
  28. H. Wake, S. Mori, K. Liu, H. K. Takahashi, and M. Nishibori, “Histidine-rich glycoprotein inhibited high mobility group box1 in complex with heparin-induced angiogenesis in matrigel plug assay,” European Journal of Pharmacology, vol. 623, no. 1–3, pp. 89–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Fiuza, M. Bustin, S. Talwar et al., “Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells,” Blood, vol. 101, no. 7, pp. 2652–2660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. A. El-Asrar, L. Missotten, and K. Geboes, “Expression of high-mobility groups box-1/receptor for advanced glycation end products/osteopontin/early growth response-1 pathway in proliferative vitreoretinal epiretinal membranes,” Molecular Vision, vol. 17, pp. 508–518, 2011. View at Google Scholar · View at Scopus
  31. A. Rossini, A. Zacheo, D. Mocini et al., “HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 4, pp. 683–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Saito, P. Geisen, A. Uppal, and M. E. Hartnett, “Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity,” Molecular Vision, vol. 13, pp. 840–853, 2007. View at Google Scholar · View at Scopus
  33. Y. Saito, A. Uppal, G. Byfield, S. Budd, and M. E. Hartnett, “Activated NAD(P)H oxidase from supplemental oxygen induces neovascularization independent of VEGF in retinopathy of prematurity model,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1591–1598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. I. Lelkes, K. L. Hahn, D. A. Sukovich, S. Karmiol, and D. H. Schmidt, “On the possible role of reactive oxygen species in angiogenesis,” Advances in Experimental Medicine and Biology, vol. 454, pp. 295–310, 1998. View at Google Scholar · View at Scopus
  35. D. Tang, R. Kang, H. J. Zeh III, and M. T. Lotze, “High-mobility group box 1, oxidative stress, and disease,” Antioxidants and Redox Signaling, vol. 14, no. 7, pp. 1315–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Kang, K. M. Livesey, H. J. Zeh III, M. T. Lotze, and D. Tang, “HMGB1 as an autophagy sensor in oxidative stress,” Autophagy, vol. 7, no. 8, pp. 904–906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. D. Mongan, J. Capacchione, J. L. Fontana, S. West, and R. Bünger, “Pyruvate improves cerebral metabolism during hemorrhagic shock,” The American Journal of Physiology, vol. 281, no. 2, pp. H854–H864, 2001. View at Google Scholar · View at Scopus
  38. J. Y. Lee, Y. H. Kim, and J. Y. Koh, “Protection by pyruvate against transient forebrain ischemia in rats,” The Journal of Neuroscience, vol. 21, no. 20, Article ID RC171, 2001. View at Google Scholar · View at Scopus
  39. M. H. Yoo, J.-Y. Lee, S. E. Lee, J.-Y. Koh, and Y. H. Yoon, “Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo,” Investigative Ophthalmology and Visual Science, vol. 45, no. 5, pp. 1523–1530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. H. Davé, J. S. Tilstra, K. Matsuoka et al., “Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 633–643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K.-Y. Chung, J.-J. Park, and Y. S. Kim, “The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate,” Transplantation Proceedings, vol. 40, no. 7, pp. 2136–2138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. K. Kao and M. P. Fink, “The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds,” Biochemical Pharmacology, vol. 80, no. 2, pp. 151–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Yang, D. J. Gallo, J. J. Baust et al., “Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock,” The American Journal of Physiology, vol. 283, no. 1, pp. G212–G221, 2002. View at Google Scholar · View at Scopus
  44. R. Yang, T. Uchiyama, S. M. Alber et al., “Ethyl pyruvate ameliorates distant organ injury in a murine model of acute necrotizing pancreatitis,” Critical Care Medicine, vol. 32, no. 7, pp. 1453–1459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C.-X. Wu, H. Sun, Q. Liu, H. Guo, and J.-P. Gong, “LPS induces HMGB1 relocation and release by activating the NF-κB-CBP signal transduction pathway in the murine macrophage-like cell line RAW264.7,” Journal of Surgical Research, vol. 175, no. 1, pp. 88–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J.-P. Girard, “A Direct Inhibitor of HMGB1 Cytokine,” Chemistry and Biology, vol. 14, no. 4, pp. 345–347, 2007. View at Publisher · View at Google Scholar · View at Scopus