Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 405284, 8 pages
http://dx.doi.org/10.1155/2013/405284
Research Article

Angiotensin-Converting Enzyme 2 Deficiency Aggravates Glucose Intolerance via Impairment of Islet Microvascular Density in Mice with High-Fat Diet

Department of Endocrinology, Union Hospital, Tongji Medical College of HuaZhong, University of Science & Technology, Wuhan 430022, China

Received 15 January 2013; Accepted 20 February 2013

Academic Editor: Raffaele Marfella

Copyright © 2013 Li Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. A. Skipworth, G. Szabadkai, S. W. M. Olde Damink, P. S. Leung, S. E. Humphries, and H. E. Montgomery, “Review article: pancreatic renin-angiotensin systems in health and disease,” Alimentary Pharmacology & Therapeutics, vol. 34, no. 8, pp. 840–852, 2011. View at Google Scholar
  2. S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Donoghue, F. Hsieh, E. Baronas et al., “A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9,” Circulation Research, vol. 87, no. 5, pp. e1–e9, 2000. View at Google Scholar · View at Scopus
  4. G. I. Rice, D. A. Thomas, P. J. Grant, A. J. Turner, and N. M. Hooper, “Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism,” Biochemical Journal, vol. 383, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Ferrario, “ACE2: more of Ang-(1–7) or less Ang II?” Current Opinion in Nephrology and Hypertension, vol. 20, no. 1, pp. 1–6, 2011. View at Google Scholar
  6. R. A. S. Santos, A. J. Ferreira, and A. C. Simões E Silva, “Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis,” Experimental Physiology, vol. 93, no. 5, pp. 519–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Cheng and P. S. Leung, “An update on the islet renin-angiotensin system,” Peptides, vol. 32, no. 5, pp. 1087–1095, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. S. Leung, “The physiology of a local renin-angiotensin system in the pancreas,” Journal of Physiology, vol. 580, no. 1, pp. 31–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Batlle, M. J. Soler, and M. Ye, “ACE2 and diabetes: ACE of ACEs?” Diabetes, vol. 59, no. 12, pp. 2994–2996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Chappell, A. Millsted, D. I. Diz, K. B. Brosnihan, and C. M. Ferrario, “Evidence for an intrinsic angiotensin system in the canine pancreas,” Journal of Hypertension, vol. 9, no. 8, pp. 751–759, 1991. View at Google Scholar · View at Scopus
  11. T. Lau, P. O. Carlsson, and P. S. Leung, “Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets,” Diabetologia, vol. 47, no. 2, pp. 240–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Y. Lam and P. S. Leung, “Regulation and expression of a renin-angiotensin system in human pancreas and pancreatic endocrine tumours,” European Journal of Endocrinology, vol. 146, no. 4, pp. 567–572, 2002. View at Google Scholar · View at Scopus
  13. C. Tikellis, M. E. Cooper, and M. C. Thomas, “Role of the renin-angiotensin system in the endocrine pancreas: implications for the development of diabetes,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 737–751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Bindom and E. Lazartigues, “The sweeter side of ACE2: physiological evidence for a role in diabetes,” Molecular and Cellular Endocrinology, vol. 302, no. 2, pp. 193–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. P. S. Leung and P. O. Carlsson, “Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus,” Pancreas, vol. 30, no. 4, pp. 293–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. S. Leung, “Mechanisms of protective effects induced by blockade of the renin-angiotensin system: novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes,” Diabetic Medicine, vol. 24, no. 2, pp. 110–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Tikellis, P. J. Wookey, R. Candido, S. Andrikopoulos, M. C. Thomas, and M. E. Cooper, “Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat,” Diabetes, vol. 53, no. 4, pp. 989–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Yuan, X. Li, J. Li, H. l. Li, and S. S. Cheng, “Effects of renin-angiotensin system blockade on the islet morphology and function in rats with long-term high-fat diet,” Acta Diabetologica. In press.
  19. A. J. Scheen, “Renin-angiotensin system inhibition prevents type 2 diabetes mellitus—part 1: a meta-analysis of randomised clinical trials,” Diabetes and Metabolism, vol. 30, no. 6, pp. 487–496, 2004. View at Google Scholar · View at Scopus
  20. E. L. Gillespie, C. M. White, M. Kardas, M. Lindberg, and C. I. Coleman, “The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes,” Diabetes Care, vol. 28, no. 9, pp. 2261–2266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Vejakama, A. Thakkinstian, D. Lertrattananon, A. Ingsathit, C. Ngarmukos, and J. Attia, “Reno-protective effects of renin-angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis,” Diabetologia, vol. 55, no. 3, pp. 566–578, 2011. View at Google Scholar
  22. D. W. Wong, G. Y. Oudit, H. Reich et al., “Loss of Angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury,” American Journal of Pathology, vol. 171, no. 2, pp. 438–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. M. Akirav, M. T. Baquero, L. W. Opare-Addo et al., “Glucose and inflammation control islet vascular density and β-cell function in NOD mice control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes, vol. 60, no. 3, pp. 876–883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Iwai and M. Horiuchi, “Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis,” Hypertension Research, vol. 32, no. 7, pp. 533–536, 2009. View at Google Scholar
  25. M. C. Chappell, “Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1–7)-Mas receptor axis: more than regulation of blood pressure?” Hypertension, vol. 50, no. 4, pp. 596–599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Putnam, R. Shoemaker, F. Yiannikouris, and L. Cassis, “The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome,” American Journal of Physiology, vol. 15, no. 302, pp. H1219–H1230, 2012. View at Google Scholar
  27. V. Souza-Mello, B. M. Gregório, F. S. Cardoso-De-Lemos, L. De Carvalho, M. B. Aguila, and C. A. Mandarim-De-Lacerda, “Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet,” Clinical Science, vol. 119, no. 6, pp. 239–250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. Bindom, C. P. Hans, H. Xia, A. H. Boulares, and E. Lazartigues, “Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice,” Diabetes, vol. 59, no. 10, pp. 2540–2548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Agudo, E. Ayuso, V. Jimenez et al., “Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β-cell mass,” Diabetes, vol. 61, no. 11, pp. 2851–2861, 2012. View at Google Scholar
  30. O. Cleaver and Y. Dor, “Vascular instruction of pancreas development,” Development, vol. 139, no. 16, pp. 2833–2843, 2012. View at Google Scholar
  31. M. Brissova, A. Shostak, M. Shiota et al., “Pancreatic islet production of vascular endothelial growth factor-A is essential for islet vascularization, revascularization, and function,” Diabetes, vol. 55, no. 11, pp. 2974–2985, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Jabs, L. Franklin, M. B. Brenner et al., “Reduced insulin secretion and content in VEGF-A deficient mouse pancreatic islets,” Experimental and Clinical Endocrinology and Diabetes, vol. 116, no. 1, pp. S46–S49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Brissova, M. Fowler, P. Wiebe et al., “Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets,” Diabetes, vol. 53, no. 5, pp. 1318–1325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Vickers, P. Hales, V. Kaushik et al., “Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14838–14843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Castan-laurell, C. Dray, C. Knauf, O. Kunduzova, and P. Valet, “Apelin, a promising target for type 2 diabetes treatment?” Trends in Endocrinology & Metabolism, vol. 23, no. 5, pp. 234–241, 2012. View at Google Scholar
  36. M. S. Winzell, C. Magnusson, and B. Ahrén, “The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice,” Regulatory Peptides, vol. 131, no. 1–3, pp. 12–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Guo, Q. Li, W. Wang et al., “Apelin inhibits insulin secretion in pancreatic β-cells by activation of PI3-kinase-phosphodiesterase 3B,” Endocrine Research, vol. 34, no. 4, pp. 142–154, 2009. View at Publisher · View at Google Scholar · View at Scopus