Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 614908, 6 pages
http://dx.doi.org/10.1155/2013/614908
Clinical Study

Serum Concentrations of Transforming Growth Factor-Beta 1 in Predicting the Occurrence of Diabetic Retinopathy in Juvenile Patients with Type 1 Diabetes Mellitus

1Department of Clinical and Experimental Endocrinology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
2Department of Immunology, Medical University of Gdańsk, Gdańsk, Poland
3Department and Clinic of Ophthalmology, Medical University of Gdańsk, Gdańsk, Poland
4Department and Clinic of Pediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland

Received 30 November 2012; Accepted 20 February 2013

Academic Editor: Barbara M. Wirostko

Copyright © 2013 Katarzyna Zorena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Romero, M. Salvat, J. Fernández, M. Baget, and I. Martinez, “Renal and retinal microangiopathy after 15 years of follow-up study in a sample of type 1 diabetes mellitus patients,” Journal of Diabetes and Its Complications, vol. 21, no. 2, pp. 93–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Salardi, M. Porta, G. Maltoni et al., “Infant and toddler type 1 diabetes: complications after 20 years' duration,” Diabetes Care, vol. 35, no. 4, pp. 29–33, 2012. View at Publisher · View at Google Scholar
  3. Y. H. Cho, M. E. Craig, S. Hing et al., “Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006,” Pediatr Diabetes, vol. 13, no. 1, pp. 682–689, 2011. View at Publisher · View at Google Scholar
  4. “Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group,” Ophthalmology, vol. 98, supplement 5, no. 11, pp. 807–822, 1991.
  5. K. C. Donaghue, F. Chiarelli, D. Trotta, J. Allgrove, and K. Dahl-Jorgensen, “Microvascular and macrovascular complications associated with diabetes in children and adolescents,” Pediatric Diabetes, vol. 10, no. 12, pp. 195–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Karlberg, C. Falk, A. Green, A. K. Sjølie, and J. Grauslund, “Proliferative retinopathy predicts nephropathy: a 25-year follow-up study of type 1 diabetic patients,” Acta Diabetologica, vol. 49, no. 4, pp. 263–268, 2012. View at Publisher · View at Google Scholar
  7. B. F. Schrijvers, A. S. De Vriese, and A. Flyvbjerg, “From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines,” Endocrine Reviews, vol. 25, no. 6, pp. 971–1010, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Han, S. W. Ha, I. K. Lee, B. W. Kim, and J. G. Kim, “High glucose-induced apoptosis in bovine retinal pericytes is associated with transforming growth factor β and βIG-H3: βIG-H3 induces apoptosis in retinal pericytes by releasing Arg-Gly-Asp peptides,” Clinical and Experimental Ophthalmology, vol. 38, no. 6, pp. 620–628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Zorena, D. Raczyńska, and K. Raczyńska, “Immunological risk factors for the development and progression of diabetic retinopathy,” in Diabetic Retinopathy, pp. 137–162, InTech, 2012. View at Publisher · View at Google Scholar
  10. K. Zorena, J. Myśliwska, M. Myśliwiec, A. Balcerska, P. Lipowski, and K. Raczyńska, “Interleukin-12 and tumour necrosis factor-α equilibrium is a prerequisite for clinical course free from late complications in children with type 1 diabetes mellitus,” Scandinavian Journal of Immunology, vol. 67, no. 2, pp. 204–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Raczyńska, K. Zorena, J. Myśliwska, M. Myśliwiec, D. Raczyńska-Woźniak, and A. Balcerska, “Analysis of the pro-angiogenic factor influencing the development of retinopathy in children with diabetes mellitus type 1,” Polish Journal of Environmental Studies, vol. 17, no. 1A, pp. 132–136, 2008. View at Google Scholar
  12. G. J. Sieczkiewicz and I. M. Herman, “TGF-β1 signaling controls retinal pericyte contractile protein expression,” Microvascular Research, vol. 66, no. 3, pp. 190–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Loukovaara, A. Robciuc, J. M. Holopainen et al., “Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy,” Acta Ophthalmologica, 2012. View at Publisher · View at Google Scholar
  14. M. O. Li, Y. Y. Wan, S. Sanjabi, A. K. L. Robertson, and R. A. Flavell, “Transforming growth factor-β regulation of immune responses,” Annual Review of Immunology, vol. 24, pp. 99–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Toma and T. A. McCaffrey, “Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects,” Cell and Tissue Research, vol. 347, no. 1, pp. 155–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. K. I. Voumvourakis, R. CH. Antonelou, D. K. Kitsos, E. Stamboulis, and S. Tsiodras, “TGFβ/BMPs: crucial crossroad in neural autoimmune disorders,” Neurochemistry International, vol. 59, no. 5, pp. 542–550, 2011. View at Publisher · View at Google Scholar
  17. C. Ho, P. H. Lee, Y. C. Hsu, F. S. Wang, Y. T. Huang, and C. L. Lin, “Sustained Wnt/β-catenin signaling rescues high glucose induction of transforming growth factor-β1-mediated renal fibrosis,” The American Journal of the Medical Sciences, vol. 344, no. 5, pp. 374–382, 2012. View at Publisher · View at Google Scholar
  18. E. Korpinen, A. M. Teppo, L. Hukkanen, H. K. Åkerblom, C. Grönhagen-Riska, and O. Vaarala, “Urinary transforming growth factor-β1 and α1-microglobulin in children and adolescents with type 1 diabetes,” Diabetes Care, vol. 23, no. 5, pp. 664–668, 2000. View at Google Scholar · View at Scopus
  19. K. Zorena, E. Malinowska, D. Raczyńska, and M. Myśliwiec, “Relationship between serum advanced glycation end-products (AGEs) and TGF-β1 levels and the presence of microangiopathy in children and adolescents with type 1 diabetes mellitus,” Pediatric Endocrinology, vol. 11, no. 2, pp. 9–16, 2012. View at Google Scholar
  20. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 33, supplement 1, pp. S62–S69, 2010. View at Publisher · View at Google Scholar
  21. Position of the Polish Diabetes Association, “Clinical Recommendations for treatment of patients with diabetes,” Journal of the Diabetes, vol. 12, supplement, pp. A3–A7, 2011. View at Google Scholar
  22. “24th Report The fourth report on the diagnosis, evaluation and treatment of high blood pressure in children and adolescent,” Pediatrics, vol. 114, pp. 555–576, 2004.
  23. C. E. Mogensen, W. F. Keane, P. H. Bennett et al., “Prevention of diabetic renal disease with special reference to microalbuminuria,” The Lancet, vol. 346, no. 8982, pp. 1080–1084, 1995. View at Google Scholar · View at Scopus
  24. J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982. View at Google Scholar · View at Scopus
  25. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach,” Biometrics, vol. 44, no. 3, pp. 837–845, 1988. View at Google Scholar · View at Scopus
  26. M. Beránek, K. Kakov, P. Bene et al., “Polymorphism R25P in the gene encoding transforming growth factor-beta (TGF-β1) is a newly identified risk factor for proliferative diabetic retinopathy,” American Journal of Medical Genetics, vol. 109, no. 4, pp. 278–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Zhang, D. Fraser, and A. Phillips, “ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-β1 autoinduction in proximal tubular epithelial cells,” American Journal of Pathology, vol. 169, no. 4, pp. 1282–1293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Jakuš, M. Sapák, and J. Kostolanská, “Circulating TGF-β1, glycation, and oxidation in children with diabetes mellitus type 1,” Experimental Diabetes Research, vol. 2012, Article ID 510902, 7 pages, 2012. View at Publisher · View at Google Scholar
  29. N. Chaturvedi, C. G. Schalkwijk, H. Abrahamian, J. H. Fuller, and C. D. Stehouwer, “Circulating and urinary transforming growth factor beta1, Amadori albumin, and complications of type 1 diabetes: the EURODIAB prospective complications study,” Diabetes care, vol. 25, no. 12, pp. 2320–2327, 2002. View at Google Scholar · View at Scopus
  30. E. Papadopoulou, K. Anagnostopoulos, G. Tripsianis et al., “Evaluation of predictive and prognostic significance of serum TGF-β1 levels in breast cancer according to HER-2 codon 655 polymorphism,” Neoplasma, vol. 55, no. 3, pp. 229–238, 2008. View at Google Scholar · View at Scopus
  31. A. E. González-Santiago, L. A. Mendoza-Topete, F. Sánchez-Llamas, R. Troyo-Sanromán, and C. M. Gurrola-Díaz, “TGF-β1 serum concentration as a complementary diagnostic biomarker of lung cancer: establishment of a cut-point value,” Journal of Clinical Laboratory Analysis, vol. 25, no. 4, pp. 238–243, 2011. View at Publisher · View at Google Scholar · View at Scopus