Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 712092, 11 pages
http://dx.doi.org/10.1155/2013/712092
Review Article

Traditional Indian Medicines Used for the Management of Diabetes Mellitus

1Department of Biochemistry, University of Allahabad, Allahabad 211002, India
2Centre of Food Technology, University of Allahabad, Allahabad 211002, India

Received 7 April 2013; Accepted 16 May 2013

Academic Editor: Pinar Atukeren

Copyright © 2013 Syed Ibrahim Rizvi and Neetu Mishra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. K. Keter and P. C. Mutiso, “Ethnobotanical studies of medicinal plants used by Traditional Health Practitioners in the management of diabetes in Lower Eastern Province, Kenya,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 74–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Dong, N. Wang, L. Zhao, and F. Lu, “Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 591654, 12 pages, 2012. View at Publisher · View at Google Scholar
  3. N. Unwin, D. Whiting, L. Guariguata, G. Ghyoot, and D. Gan, IDF. Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 5th edition, 2011.
  4. M. K. Ali, K. M. V. Narayan, and N. Tandon, “Diabetes & coronary heart disease: current perspectives,” Indian Journal of Medical Research, vol. 132, no. 11, pp. 584–597, 2010. View at Google Scholar · View at Scopus
  5. M. A. Banerji, N. Faridi, R. Atluri, R. L. Chaiken, and H. E. Lebovitz, “Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 137–144, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Dudeja, A. Misra, R. M. Pandey, G. Devina, G. Kumar, and N. K. Vikram, “BMI does not accurately predict overweight in Asian Indians in northern India,” British Journal of Nutrition, vol. 86, no. 1, pp. 105–112, 2001. View at Google Scholar · View at Scopus
  7. Y. V. Sashikanth, P. Aravindkumar, and C. Swarupa, “Two way relation of diabetes mellitus and periodontitis—a review,” Annals and Essences of Dentistry, vol. 4, no. 1, 2012. View at Google Scholar
  8. World Health Organization, “Traditional medicine-growing needs and potential,” WHO Policy Perspective on Medicines, vol. 2, pp. 1–6, 2002. View at Google Scholar
  9. M. Modak, P. Dixit, J. Londhe, S. Ghaskadbi, and T. P. A. Devasagayam, “Indian herbs and herbal drugs used for the treatment of diabetes,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 3, pp. 163–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Patil, R. Patil, B. Ahirwar, and D. Ahirwar, “Current status of Indian medicinal plants with antidiabetic potential: a review,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 2, pp. S291–S298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Simmonds and M. Howes, “Plants used in the treatment of diabetes,” in Traditional Medicines for Modern Time—Antidiabetic Plants, A. Soumyanath, Ed., vol. 6th, pp. 19–82, CRC Press/Taylor and Francis Group, 2006. View at Google Scholar
  12. D. Singh, B. Singh, and R. K. Goel, “Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 565–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Agnivesha, Prameha Chikitsa, Charak Samhita, Choukhambha Sanskrita Sansthan, Varanasi, 2001.
  14. S. Ambike and M. Rao, “Studies on a phytosterolin fromthe bark of Ficus religiosa,” The Indian Journal of Pharmacy, vol. 29, pp. 91–94, 1967. View at Google Scholar
  15. M. Bnouham, A. Ziyyat, H. Mekhfi, A. Tahri, and A. Legssyer, “Medicinal plants with potential antidiabetic activity—a review of ten years of herbal medicine research (1990–2000),” International Journal of Diabetes and Metabolism, vol. 14, no. 1, pp. 1–25, 2006. View at Google Scholar · View at Scopus
  16. S. Ayodhya, S. Kusum, and S. Anjali, “Hypoglycemic activity of different extracts of various herbal plants Singh,” International Journal of Ayurveda and Research in Pharmacy, vol. 1, no. 1, pp. 212–224, 2010. View at Google Scholar
  17. K. D. Swami and N. P. S. Bisht, “Constituents of Ficus religiosa and Ficus infectoria and their Biological Activity,” Journal of the Indian Chemical Society, vol. 73, no. 11, p. 631, 1996. View at Google Scholar · View at Scopus
  18. T. A. Deshmukh, B. V. Yadav, S. L. Badole, S. L. Bodhankar, and S. R. Dhaneshwar, “Antihyperglycaemic activity of petroleum ether extract of Ficus racemosa fruits in alloxan induced diabetic mice,” Pharmacologyonline, vol. 2, pp. 504–515, 2007. View at Google Scholar · View at Scopus
  19. C. Bouché, S. Serdy, C. R. Kahn, and A. B. Goldfine, “The cellular fate of glucose and its relevance in type 2 diabetes,” Endocrine Reviews, vol. 25, no. 5, pp. 807–830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. K. Grover, V. Vats, and S. Yadav, “Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism,” Molecular and Cellular Biochemistry, vol. 241, no. 1-2, pp. 53–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Ananthan, M. Latha, K. M. Ramkumar, L. Pari, C. Baskar, and V. Narmatha Bai, “Effect of Gymnema montanum leaves on serum and tissue lipids in alloxan diabetic rats,” Experimental Diabesity Research, vol. 4, no. 3, pp. 183–189, 2003. View at Google Scholar · View at Scopus
  22. M. Gayathri and K. Kannabiran, “Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats,” Indian Journal of Clinical Biochemistry, vol. 23, no. 4, pp. 394–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kirana, S. S. Agrawal, and B. P. Srinivasan, “Aqueous extract of Ficus religiosa Linn. reduces oxidative stress in experimentally induced type 2 diabetic rats,” Indian Journal of Experimental Biology, vol. 47, no. 10, pp. 822–826, 2009. View at Google Scholar · View at Scopus
  24. M. S. Baliga, S. Fernandes, K. R. Thilakchand, P. D'souza, and S. Rao, “Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (Black Plum), a traditional medicinal plant of India,” Journal Alternative and Complemenaryt Medicine, vol. 19, no. 3, pp. 191–197, 2013. View at Google Scholar
  25. M. Ayyanar and P. Subash-Babu, “Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 3, pp. 240–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. A. K. N. Chaudhuri, S. Pal, A. Gomes, and S. Bhattacharya, “Anti-inflammatory and related actions of Syzygium cuminii seed extract,” Phytotherapy Research, vol. 4, no. 1, pp. 5–10, 1990. View at Google Scholar · View at Scopus
  27. I. S. Bhatia and K. L. Bajaj, “Chemical constituents of the seeds and bark of Syzygium cumini,” Planta Medica, vol. 28, no. 4, pp. 346–352, 1975. View at Google Scholar · View at Scopus
  28. H. C. Srivastava, “Paper chromatography of fruit juices,” Journal of Scientific and Industrial Research, vol. 12, pp. 363–365, 1953. View at Google Scholar
  29. Y. S. Lewis, C. T. Dwarakanath, and D. S. Johar, “Acids and sugars in Eugenia jambolana,” Journal of Scientific and Industrial Research, vol. 15, pp. 280–281, 1956. View at Google Scholar
  30. K. Ravi, S. Rajasekaran, and S. Subramanian, “Antihyperlipidemic effect of Eugenia jambolanaseed kernel on streptozotocin-induced diabetes in rats,” Food and Chemical Toxicology, vol. 43, no. 9, pp. 1433–1439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. K. Grover, V. Vats, and S. S. Rathi, “Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism,” Journal of Ethnopharmacology, vol. 73, no. 3, pp. 461–470, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K. K. Bhargava, R. Dayal, and T. R. Seshadri, “Chemical components of Eugenia jambolanastem bark,” Current Science, vol. 43, pp. 645–646, 1974. View at Google Scholar
  33. J. Morton, Fruits of Warm Climates, Julia Morton Winterville, Miami, Fla, USA, 1987.
  34. M. J. Aybar, A. N. Sánchez Riera, A. Grau, and S. S. Sánchez, “Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 125–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Sagrawat, A. S. Mann, and M. D. Kharya, “Pharmacological potential of Eugenia jambolana: a review,” Pharmacognosy Magazine, vol. 2, no. 6, pp. 96–105, 2006. View at Google Scholar
  36. K. Ravi, B. Ramachandran, and S. Subramanian, “Effect of Eugenia jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats,” Life Sciences, vol. 75, no. 22, pp. 2717–2731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Singh and M. Gupta, “Effects of ethanolic extract of Syzygium cumini (Linn) seed powder on pancreatic islets of alloxan diabetic rats,” Indian Journal of Experimental Biology, vol. 45, no. 10, pp. 861–867, 2007. View at Google Scholar · View at Scopus
  38. D. S. Shrotri, “Investigation of hypoglycemic properties of Vinca rosea, Cassia auriculata and Eugenia jambolana,” Indian Journal of Medical Research, vol. 51, p. 464, 1963. View at Google Scholar
  39. P. Kedar and C. H. Chakrabarti, “Effects of jambolan seed treatment on blood sugar, lipids and urea in streptozotocin induced diabetes in rabbits,” Indian Journal of Physiology and Pharmacology, vol. 27, no. 2, pp. 135–140, 1983. View at Google Scholar · View at Scopus
  40. A. Chaturvedi, M. Mohan Kumar, G. Bhawani, H. Chaturvedi, M. Kumar, and R. K. Goel, “Effect of ethanolic extract of Eugenia jambolana seeds on gastric ulceration and secretion in rats,” Indian Journal of Physiology and Pharmacology, vol. 51, no. 2, pp. 131–140, 2007. View at Google Scholar · View at Scopus
  41. R. Sood, D. Swarup, S. Bhatia et al., “Antiviral activity of crude extracts of Eugenia jambolana Lam. against highlypathogenic avian influenza (H5N1) virus,” Indian Journal of Experimental Biology, vol. 50, no. 3, pp. 179–186, 2012. View at Google Scholar · View at Scopus
  42. V. Bhanuprakash, M. Hosamani, V. Balamurugan et al., “In vitro antiviral activity of plant extracts on goatpox virus replication,” Indian Journal of Experimental Biology, vol. 46, no. 2, pp. 120–127, 2008. View at Google Scholar · View at Scopus
  43. S. B. Sharma, A. Nasir, K. M. Prabhu, P. S. Murthy, and G. Dev, “Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits,” Journal of Ethnopharmacology, vol. 85, no. 2-3, pp. 201–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Kopanski and G. Schnelle, “Isolation of bergenin from barks of Syzygium cumini,” Planta Medica, vol. 54, p. 572, 1988. View at Google Scholar
  45. D. Chakrabarty, P. K. Mahapatra, and A. K. N. Chaudhuri, “A Neuro-psycopharmacological study of Syzygium cumini,” Planta Medica, vol. 2, pp. 139–1143, 1985. View at Google Scholar
  46. A. Chaturvedi, G. Bhawani, P. K. Agarwal, S. Goel, A. Singh, and R. K. Goel, “Antidiabetic and antiulcer effects of extract of Eugenia jambolana seed in mild diabetic rats: study on gastric mucosal offensive acid-pepsin secretion,” Indian Journal of Physiology and Pharmacology, vol. 53, no. 2, pp. 137–146, 2009. View at Google Scholar · View at Scopus
  47. M. S. A. Bhuiyan, M. Younus Mia, and M. A. Rashid, “Antibacterial principles of the seeds of Eugenia jambolana,” Bangladesh Journal of Botany, vol. 25, no. 2, pp. 239–241, 1996. View at Google Scholar · View at Scopus
  48. I. T. Kusumoto, T. Nakabayashi, H. Kida et al., “Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease,” Phytotherapy Research, vol. 9, no. 3, pp. 180–184, 1995. View at Google Scholar · View at Scopus
  49. G. Indira and R. Mohan, Jamun Fruits, National Institute of Nutrition. ICMR, Hyderabad, India, 1993.
  50. R. T. Cirqueira and M. J. Q. F. Alves, “Hypotensive and diuretic effects of pitanga (Eugenia uniflora L.) and jambos (Eugenia jambolana Lam.) aqueous extracts in normotensive anesthetized rats,” Revista Brasileira de Plantas Medicinais, vol. 7, no. 2, pp. 86–91, 2005. View at Google Scholar · View at Scopus
  51. M. B. Krawinkel and G. B. Keding, “Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia,” Nutrition Reviews, vol. 64, no. 7, pp. 331–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Leung, R. Birtwhistle, J. Kotecha, S. Hannah, and S. Cuthbertson, “Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review,” British Journal of Nutrition, vol. 102, no. 12, pp. 1703–1708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Grover and S. P. Yadav, “Pharmacological actions and potential uses of Momordica charantia: a review,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 123–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Basch, S. Gabardi, and C. Ulbricht, “Bitter melon (Momordica charantia): a review of efficacy and safety,” American Journal of Health-System Pharmacy, vol. 60, no. 4, pp. 356–359, 2003. View at Google Scholar · View at Scopus
  55. V. Gadang, W. Gilbert, N. Hettiararchchy, R. Horax, L. Katwa, and L. Devareddy, “Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome,” Journal of Medicinal Food, vol. 14, no. 1-2, pp. 86–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. C. C. Shih, C. H. Lin, W. L. Lin, and J. B. Wu, “Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats,” Journal of Ethnopharmacology, vol. 123, no. 1, pp. 82–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Q. Wang, X. H. Zhang, Y. Yu et al., “Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice,” Journal of Nutritional Biochemistry, vol. 22, no. 11, pp. 1064–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Tsai, E. C. Chen, H. Tsay, and C. Huang, “Wild bitter gourd improves metabolic syndrome: a preliminary dietary supplementation trial,” Nutrition Journal, vol. 11, no. 1, article 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Inayat-ur-Rahman, S. A. Malik, M. Bashir, R. Khan, and M. Iqbal, “Serum sialic acid changes in non-insulin-dependant diabetes mellitus (NIDDM) patients following bitter melon (Momordica charantia) and rosiglitazone (Avandia) treatment,” Phytomedicine, vol. 16, no. 5, pp. 401–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Saxena and N. K. Vikram, “Role of selected Indian plants in management of type 2 diabetes: a review,” Journal of Alternative and Complementary Medicine, vol. 10, no. 2, pp. 369–378, 2004. View at Google Scholar · View at Scopus
  61. P. Chaturvedi, “Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects,” Journal of Medicinal Food, vol. 15, no. 2, pp. 101–107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. B. A. Shibib, L. A. Khan, and R. Rahman, “Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase,” Biochemical Journal, vol. 292, no. 1, pp. 267–270, 1993. View at Google Scholar · View at Scopus
  63. H. L. Cheng, H. K. Huang, C. I. Chang, C. P. Tsai, and C. H. Chou, “A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 6835–6843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. A. Malik, M. Singh, and P. L. Sharma, “Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 729–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Fawzi Mahomoodally, A. Hussein Subratty, A. Gurib-Fakim, M. Iqbal Choudhary, and S. Nahar Khan, “Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo,” Scientific World Journal, vol. 2012, pp. 284–285, 2012. View at Google Scholar
  66. A. C. Keller, J. Ma, A. Kavalier, K. He, A. B. Brillantes, and E. J. Kennelly, “Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro,” Phytomedicine, vol. 19, no. 1, pp. 32–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Pattanayak, P. Behera, D. Das, and S. Panda, “Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview,” Pharmacognosy Reviews, vol. 4, no. 7, pp. 95–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Khan, A. K. Najmi, M. Akhtar, M. Aqil, M. Mujeeb, and K. K. Pillai, “A pharmacological appraisal of medicinal plants with antidiabetic potential,” Journal of Pharmacy and Bioallied Sciences, vol. 4, no. 1, pp. 27–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. R. T. Narendhirakannan, S. Subramanian, and M. Kandaswamy, “Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin-induced diabetes in experimental rats,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 12, pp. 1150–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. A. Hannan, L. Marenah, L. Ali, B. Rokeya, P. R. Flatt, and Y. H. A. Abdel-Wahab, “Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells,” Journal of Endocrinology, vol. 189, no. 1, pp. 127–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Nair, T. Kalariya, and S. Chanda, “Antibacterial activity of some selected Indian medicinal flora,” Turkish Journal of Biology, vol. 29, pp. 41–47, 2005. View at Google Scholar
  72. S. Gholap and A. Kar, “Hypoglycaemic effects of some plant extracts are possibly mediated through inhibition in corticosteroid concentration,” Pharmazie, vol. 59, no. 11, pp. 876–878, 2004. View at Google Scholar · View at Scopus
  73. R. R. Chattopadhyay, “Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats,” Indian Journal of Experimental Biology, vol. 31, no. 11, pp. 891–893, 1993. View at Google Scholar · View at Scopus
  74. P. K. Singh, D. Baxi, S. Banerjee, and A. V. Ramachandran, “Therapy with methanolic extract of Pterocarpus marsupium Roxb and Ocimum sanctum Linn reverses dyslipidemia and oxidative stress in alloxan induced type I diabetic rat model,” Experimental and Toxicologic Pathology, vol. 64, no. 5, pp. 441–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. R. N. Patil, R. Y. Patil, B. Ahirwar, and D. Ahirwar, “Evaluation of antidiabetic and related actions of some Indian medicinal plants in diabetic rats,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 1, pp. 20–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Sood, D. Narang, M. K. Thomas, Y. K. Gupta, and S. K. Maulik, “Effect of Ocimum sanctum Linn. on cardiac changes in rats subjected to chronic restraint stress,” Journal of Ethnopharmacology, vol. 108, no. 3, pp. 423–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Balanehru and B. Nagarajan, “Intervention of Adriamycin induced free radical damage,” Biochemistry International, vol. 28, no. 4, pp. 735–744, 1992. View at Google Scholar · View at Scopus
  78. M. T. Salles Trevisan, M. G. Vasconcelos Silva, B. Pfundstein, B. Spiegelhalder, and R. W. Owen, “Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum,” Journal of Agricultural and Food Chemistry, vol. 54, no. 12, pp. 4378–4382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Sarkar, S. C. Lavania, D. N. Pandey, and M. C. Pant, “Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits,” Indian Journal of Physiology and Pharmacology, vol. 38, no. 4, pp. 311–312, 1994. View at Google Scholar · View at Scopus
  80. B. Kavishankar, N. Lakshmidevi, S. Mahadeva, H. S. Murthy, S. R. Prakash, and Niranjana, “Diabetes and medicinal plants—a review,” International Journal of Pharmacy and Biomedical Science, vol. 2, no. 3, pp. 65–80, 2011. View at Google Scholar
  81. S. Singh, M. Malhotra, and D. K. Majumdar, “Antibacterial activity of Ocimum sanctum L. fixed oil,” Indian Journal of Experimental Biology, vol. 43, no. 9, pp. 835–837, 2005. View at Google Scholar · View at Scopus
  82. N. Khanna and J. Bhatia, “Antinociceptive action of Ocimum sanctum (Tulsi) in mice: possible mechanisms involved,” Journal of Ethnopharmacology, vol. 88, no. 2-3, pp. 293–296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. M. K. Asha, D. Prashanth, B. Murali, R. Padmaja, and A. Amit, “Anthelmintic activity of essential oil of Ocimum sanctum and eugenol,” Fitoterapia, vol. 72, no. 6, pp. 669–670, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Ahmed, R. N. Ahamed, R. H. Aladakatti, and M. G. Ghosesawar, “Reversible anti-fertility effect of benzene extract of Ocimum sanctum leaves on sperm parameters and fructose content in rats,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 13, no. 1, pp. 51–59, 2002. View at Google Scholar · View at Scopus
  85. M. A. Kelm, M. G. Nair, G. M. Strasburg, and D. L. DeWitt, “Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn,” Phytomedicine, vol. 7, no. 1, pp. 7–13, 2000. View at Google Scholar · View at Scopus
  86. S. U. Yanpallewar, S. Rai, M. Kumar, and S. B. Acharya, “Evaluation of antioxidant and neuroprotective effect of Ocimum sanctum on transient cerebral ischemia and long-term cerebral hypoperfusion,” Pharmacology Biochemistry and Behavior, vol. 79, no. 1, pp. 155–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. R. K. Goel, K. Sairam, M. Dorababu, T. Prabha, and C. V. Rao, “Effect of standardized extract of Ocimum sanctum Linn. on gastric mucosal offensive and defensive factors,” Indian Journal of Experimental Biology, vol. 43, no. 8, pp. 715–721, 2005. View at Google Scholar · View at Scopus
  88. R. Mukherjee, P. K. Dash, and G. C. Ram, “Immunotherapeutic potential of Ocimum sanctum (L) in bovine subclinical mastitis,” Research in Veterinary Science, vol. 79, no. 1, pp. 37–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Panda and A. Kar, “Ocimum sanctum leaf extract in the regulation of thyroid function in the male mouse,” Pharmacological Research, vol. 38, no. 2, pp. 107–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Prakash and S. K. Gupta, “Chemopreventive activity of Ocimum sanctum seed oil,” Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 29–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. U. S. Bhartiya, Y. S. Raut, L. J. Joseph, and B. S. Rao, “Protective effect of Ocimum sanctum L after high-dose 131iodine exposure in mice: an in vivo study,” Indian Journal of Experimental Biology, vol. 44, no. 8, pp. 647–652, 2006. View at Google Scholar · View at Scopus
  92. M. Subramanian, G. J. Chintalwar, and S. Chattopadhyay, “Antioxidant and radioprotective properties of an Ocimum sanctum polysaccharide,” Redox Report, vol. 10, no. 5, pp. 257–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Joshi and M. Parle, “Evaluation of nootropic potential of Ocimum sanctum Linn. in mice,” Indian Journal of Experimental Biology, vol. 44, no. 2, pp. 133–136, 2006. View at Google Scholar · View at Scopus
  94. P. Shokeen, K. Ray, M. Bala, and V. Tandon, “Preliminary studies on activity of Ocimum sanctum, Drynaria quercifolia, and Annona squamosa against Neisseria gonorrhoeae,” Sexually Transmitted Diseases, vol. 32, no. 2, pp. 106–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Mitra and T. Joshi, “Isoflavonoids from the heartwood of Pterocarpus marsupium,” Phytochemistry, vol. 22, no. 10, pp. 2326–2327, 1983. View at Google Scholar · View at Scopus
  96. N. Kumar and T. R. Seshadri, “A new triterpene from Pterocarpus santalinus bark,” Phytochemistry, vol. 15, no. 9, pp. 1417–1418, 1976. View at Google Scholar · View at Scopus
  97. B. Kameswara Rao, R. Giri, M. M. Kesavulu, and C. Apparao, “Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals,” Journal of Ethnopharmacology, vol. 74, no. 1, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. H. R. Ambujakshi and S. Ganapaty, “Anti obese activity of Pterocarpus marsupium barks extract in experimentally induced obese rats,” Inventi Impact: Nutraceuticals, 2011. View at Google Scholar
  99. S. Hougee, J. Faber, A. Sanders et al., “Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers,” Planta Medica, vol. 71, no. 5, pp. 387–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. V. R. Salunkhe, A. V. Yadav, A. S. Shete, S. R. Kane, and A. S. Kulkarni, “Anti-inflammatory activity of hydrogels of extracts of Pterocarpus marsupium and Coccinia indica,” Indian Drugs, vol. 42, no. 5, pp. 319–321, 2005. View at Google Scholar · View at Scopus
  101. J. K. Grover, V. Vats, and S. S. Yadav, “Pterocarpus marsupium extract (Vijayasar) prevented the alteration in metabolic patterns induced in the normal rat by feeding an adequate diet containing fructose as sole carbohydrate,” Diabetes, Obesity and Metabolism, vol. 7, no. 4, pp. 414–420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. B. K. Chakravarthy, S. Gupta, S. S. Gambhir, and K. D. Gode, “The prophylactic action of (-)-epicatechin against alloxan induced diabetes in rats,” Life Sciences, vol. 29, no. 20, pp. 2043–2047, 1981. View at Google Scholar · View at Scopus
  103. M. Manickam, M. Ramanathan, M. A. Farboodniay Jahromi, J. P. N. Chansouria, and A. B. Ray, “Antihyperglycemic activity of phenolics from Pterocarpus marsupium,” Journal of Natural Products, vol. 60, no. 6, pp. 609–610, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. B. K. Chakravarthy, S. Gupta, and K. D. Gode, “Functional beta cell regeneration in the islets of pancreas in alloxan-induced diabetic rats by (-)-epicatechin,” Life Sciences, vol. 31, no. 24, pp. 2693–2697, 1982. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Gupta and R. S. Gupta, “Effect of Pterocarpus marsupium in streptozotocin-induced hyperglycemic state in rats: comparison with glibenclamide,” Diabetologia Croatica, vol. 38, no. 2, pp. 39–45, 2009. View at Google Scholar · View at Scopus
  106. M. A. Farboodniay Jahromi, A. B. Ray, and J. P. N. Chansouria, “Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium,” Journal of Natural Products, vol. 56, no. 7, pp. 989–994, 1993. View at Google Scholar · View at Scopus
  107. F. Ahmad, P. Khalid, M. M. Khan, A. K. Rastogi, and J. R. Kidwai, “Insulin like activity in (-) epicatechin,” Acta Diabetologica Latina, vol. 26, no. 4, pp. 291–300, 1989. View at Google Scholar · View at Scopus
  108. S. I. Rizvi and M. A. Zaid, “Intracellular reduced glutathione content in normal and type 2 diabetic erythrocytes: effect of insulin and (-) epicatechin,” Journal of Physiology and Pharmacology, vol. 52, no. 3, pp. 483–488, 2001. View at Google Scholar · View at Scopus
  109. I. Cordero-Herrera, M. A. Martín, L. Bravo, L. Goya, and S. Ramos, “Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells,” Molecular Nutrition and Food Research, 2013. View at Google Scholar
  110. A. Pandey, P. Tripathi, R. Pandey, R. Srivatava, and S. Goswami, “Alternative therapies useful in the management of diabetes: a systematic review,” Journal of Pharmacy and Bioallied Science, vol. 3, no. 4, pp. 504–512, 2011. View at Google Scholar
  111. P. Kumar, R. K. Kale, and N. Z. Baquer, “Antihyperglycemic and protective effects of Trigonella foenum graecum seed powder on biochemical alterations in alloxan diabetic rats,” European Reviews in Medicine and Pharmacology Sciences, vol. 16, no. 3, pp. 18–27, 2012. View at Google Scholar
  112. K. T. Roberts, “The potential of fenugreek (Trigonella foenum-graecum) as a functional food and nutraceutical and its effects on glycemia and lipidemia,” Journal of Medicinal Food, vol. 14, no. 12, pp. 1485–1489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. R. D. Sharma, T. C. Raghuram, and N. S. Rao, “Effect of fenugreek seeds on blood glucose and serum lipids in Type I diabetes,” European Journal of Clinical Nutrition, vol. 44, no. 4, pp. 301–306, 1990. View at Google Scholar · View at Scopus
  114. A. Gupta, R. Gupta, and B. Lal, “Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study,” Journal of Association of Physicians of India, vol. 49, pp. 1057–1061, 2001. View at Google Scholar · View at Scopus
  115. V. Vats, J. K. Grover, and S. S. Rathi, “Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats,” Journal of Ethnopharmacology, vol. 79, no. 1, pp. 95–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. P. R. Petit, Y. D. Sauvaire, D. M. Hillaire-Buys et al., “Steroid saponins from fenugreek seeds: extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol,” Steroids, vol. 60, no. 10, pp. 674–680, 1995. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. Sauvaire, P. Petit, C. Broca et al., “4-hydroxyisoleucine: a novel amino acid potentiator of insulin secretion,” Diabetes, vol. 47, no. 2, pp. 206–210, 1998. View at Google Scholar · View at Scopus
  118. T. C. Raghuram, R. D. Sharma, B. Sivakumar, and B. K. Sahay, “Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients,” Phytotherapy Research, vol. 8, no. 2, pp. 83–86, 1994. View at Google Scholar · View at Scopus
  119. L. Ali, A. K. Azad Khan, Z. Hassan et al., “Characterization of the hypoglycemic effects of Trigonella foenum gracecum seed,” Planta Medica, vol. 61, no. 4, pp. 358–360, 1995. View at Publisher · View at Google Scholar · View at Scopus
  120. G. Ribes, Y. Sauvaire, C. Da Costa, and M. M. Loubatieres-Mariani, “Antidiabetic effects of subfractions from fenugreek seeds in diabetic dogs,” Proceedings of the Society for Experimental Biology and Medicine, vol. 182, no. 2, pp. 159–166, 1986. View at Google Scholar · View at Scopus
  121. S. Genet, R. K. Kale, and N. Z. Baquer, “Effects of vanadate, insulin and fenugreek (Trigonella foenum graecum) on creatine kinase levels in tissues of diabetic rat,” Indian Journal of Experimental Biology, vol. 37, no. 2, pp. 200–202, 1999. View at Google Scholar · View at Scopus
  122. A. B. Singh, A. K. Tamarkar, S. Shweta, T. Narender, and A. K. Srivastava, “Antihyperglycaemic effect of an unusual amino acid (4-hydroxyisoleucine) in C57BL/KsJ-db/db mice,” Natural Product Research, vol. 24, no. 3, pp. 258–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Hamden, B. Jaouadi, S. Carreau et al., “Potential protective effect on key steroidogenesis and metabolic enzymes and sperm abnormalities by fenugreek steroids in testis and epididymis of surviving diabetic rats,” Archives of Physiology and Biochemistry, vol. 116, no. 3, pp. 146–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Hamden, H. Masmoudi, S. Carreau, and A. Elfeki, “Immunomodulatory, β-cell, and neuroprotective actions of fenugreek oil from alloxan-induced diabetes,” Immunopharmacology and Immunotoxicology, vol. 32, no. 3, pp. 437–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. G. Suresh Kumar, A. K. Shetty, and P. V. Salimath, “Modulatory effect of fenugreek seed mucilage and spent turmeric on intestinal and renal disaccharidases in streptozotocin induced diabetic rats,” Plant Foods for Human Nutrition, vol. 60, no. 2, pp. 87–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Sugihara, H. Nojima, H. Matsuda, T. Murakami, M. Yoshikawa, and I. Kimura, “Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice,” Journal of Asian Natural Products Research, vol. 2, no. 4, pp. 321–327, 2000. View at Google Scholar · View at Scopus
  127. H. Luo, L. F. Wang, T. Imoto, and Y. Hiji, “Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine,” World Journal of Gastroenterology, vol. 7, no. 1, pp. 9–15, 2001. View at Google Scholar · View at Scopus
  128. L. F. Wang, H. Luo, M. Miyoshi, T. Imoto, Y. Hiji, and T. Sasaki, “Inhibitory effect of gymnemic acid on intestinal absorption of oleic acid in rats,” Canadian Journal of Physiology and Pharmacology, vol. 76, no. 10-11, pp. 1017–1023, 1998. View at Google Scholar · View at Scopus
  129. H. Asare-Anane, G. C. Huang, S. A. Amiel, P. M. Jones, and S. J. Persaud, “Stimulation of insulin secretion by an aqueous extract of Gymnema sylvestre: role of intracellular calcium,” Endocrine Abstracts, vol. 10, DP1, 2005. View at Google Scholar
  130. S. J. Persaud, H. Al-Majed, A. Raman, and P. M. Jones, “Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability,” Journal of Endocrinology, vol. 163, no. 2, pp. 207–212, 1999. View at Google Scholar · View at Scopus
  131. S. Gholap and A. Kar, “Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones,” Pharmazie, vol. 58, no. 6, pp. 413–415, 2003. View at Google Scholar · View at Scopus
  132. M. J. Leach, “Gymnema sylvestre for diabetes mellitus: a systematic review,” Journal of Alternative and Complementary Medicine, vol. 13, no. 9, pp. 977–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. H. G. Preuss, D. Bagchi, M. Bagchi, C. V. S. Rao, D. K. Dey, and S. Satyanarayana, “Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss,” Diabetes, Obesity and Metabolism, vol. 6, no. 3, pp. 171–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. W. T. Cefalu, J. Ye, and Z. Q. Wang, “Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans,” Endocrine, Metabolic and Immune Disorders, vol. 8, no. 2, pp. 78–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Al-Romaiyan, B. Liu, H. Asare-Anane et al., “A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro,” Phytotherapy Research, vol. 24, no. 9, pp. 1370–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. R. Karthic, S. Nagaraj, P. Arulmurugan, S. Seshadri, R. Rengasamy, and K. Kathiravan, “Gymnema sylvestre suspension cell extract show antidiabetic potential in Alloxan induced diabetic albino male rats,” Asia Pacific Journal of Tropical Biomedicine, vol. 2, supplement, pp. S930–S933, 2012. View at Google Scholar
  137. B. Liu, H. Asare-Anane, A. Al-Romaiyan et al., “Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse β-cells and human islets of Langerhans,” Cellular Physiology and Biochemistry, vol. 23, no. 1–3, pp. 125–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. A. R. Saltiel and C. R. Kahn, “Insulin signalling and the regulation of glucose and lipid metabolism,” Nature, vol. 414, no. 6865, pp. 799–806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. S. K. Jain, “Glutathione and glucose-6-phosphate dehydrogenase deficiency can increase protein glycosylation,” Free Radical Biology and Medicine, vol. 24, no. 1, pp. 197–201, 1998. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Block, “The chemistry of garlic and onions,” Scientific American, vol. 252, no. 3, pp. 114–119, 1985. View at Google Scholar · View at Scopus
  141. M. Ali, M. Thomson, and M. Afzal, “Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 62, no. 2, pp. 55–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. K. P. Pathirage and L. Yunman, “Functional herbal food ingredients used in type 2 diabetes mellitus,” Pharmacognosy Reviews, vol. 6, no. 11, pp. 37–45, 2012. View at Google Scholar
  143. K. T. Augusti and P. T. Mathew, “Lipid lowering effect ollicin (diallyl disulphide oxide) on long term feeding to normal rats,” Experientia, vol. 30, no. 5, pp. 468–470, 1974. View at Google Scholar · View at Scopus
  144. P. Rose, M. Whiteman, P. K. Moore, and Z. Z. Yi, “Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents,” Natural Product Reports, vol. 22, no. 3, pp. 351–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Thomson, H. Drobiova, K. Al-Qattan, R. Peltonen-Shalaby, Z. Al-Amin, and M. Ali, “Garlic increases antioxidant levels in diabetic and hypertensive rats determined by a modified peroxidase method,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 703049, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Liu, H. Hse, C. Lii, P. Chen, and L. Sheen, “Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats,” European Journal of Pharmacology, vol. 516, no. 2, pp. 165–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. P. T. Mathew and K. T. Augusti, “Studies on the effect of allicin (diallyl disulphide oxide) on alloxan diabetes—part I. Hypoglycaemic action and enhancement of serum insulin effect and glycogen synthesis,” Indian Journal of Biochemistry and Biophysics, vol. 10, no. 3, pp. 209–212, 1973. View at Google Scholar · View at Scopus
  148. R. C. Jain and C. R. Vyas, “Garlic in alloxan induced diabetic rabbits,” American Journal of Clinical Nutrition, vol. 28, no. 7, pp. 684–685, 1975. View at Google Scholar · View at Scopus
  149. Y. S. Diniz, K. K. H. R. Rocha, G. A. Souza et al., “Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats,” European Journal of Pharmacology, vol. 543, no. 1–3, pp. 151–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. B. O. Bever and G. R. Zahnd, “Plants with oral hypoglycemic action,” Q Journal Crude Drug Research, vol. 17, pp. 139–149, 1979. View at Google Scholar
  151. F. M. Al-Awadi and K. A. Gumaa, “Studies on the activity of individual plants of an antidiabetic plant mixture,” Acta Diabetologica Latina, vol. 24, no. 1, pp. 37–41, 1987. View at Google Scholar · View at Scopus
  152. K. T. Augusti and C. G. Sheela, “Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats,” Experientia, vol. 52, no. 2, pp. 115–119, 1996. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Patumraj, S. Tewit, S. Amatyakul et al., “Comparative effects of garlic and aspirin on diabetic cardiovascular complications,” Drug Delivery, vol. 7, no. 2, pp. 91–96, 2000. View at Google Scholar · View at Scopus
  154. H. Matsuura, “Saponins in garlic as modifiers of the risk of cardiovascular disease,” Journal of Nutrition, vol. 131, no. 3, pp. 1000S–1005S, 2001. View at Google Scholar · View at Scopus
  155. F. M. El-Demerdash, M. I. Yousef, and N. I. A. El-Naga, “Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats,” Food and Chemical Toxicology, vol. 43, no. 1, pp. 57–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Borek, “Antioxidant health effects of aged garlic extract,” Journal of Nutrition, vol. 131, no. 3, pp. 1010S–1015S, 2001. View at Google Scholar · View at Scopus
  157. J. Z. Liu, X. Y. Lin, and J. A. Milner, “Dietary garlic powder increases glutathione content and glutathione S-transferase activity in rat liver and mammary tissues,” FASEB Journal, vol. 6, abstract A3230, 1992. View at Google Scholar
  158. H. R. Madkor, S. W. Mansour, and G. Ramadan, “Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin- nicotinamide diabetic rats,” British Journal of Nutrition, vol. 105, no. 8, pp. 1210–1217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Padiya, T. N. Khatua, P. K. Bagul, M. Kuncha, and S. K. Banerjee, “Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats,” Nutrition and Metabolism, vol. 8, article 53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. M. S. Ahmad and N. Ahmed, “Antiglycation properties of aged garlic extract: possible role in prevention of diabetic complications,” Journal of Nutrition, vol. 136, no. 3, supplement, pp. 796S–799S, 2006. View at Google Scholar · View at Scopus