Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 956737, 10 pages
http://dx.doi.org/10.1155/2013/956737
Research Article

Effect of (dipic-Cl) on Lipid Metabolism Disorders in the Liver of STZ-Induced Diabetic Rats

College of Life Sciences, University of Chinese Academy of Sciences, No. 19A YuQuan Road, Beijing 100049, China

Received 21 December 2012; Accepted 24 February 2013

Academic Editor: Gordana Kocic

Copyright © 2013 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Daneman, “Type 1 diabetes,” The Lancet, vol. 367, no. 9513, pp. 847–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Wei, M. Li, and W. Ding, “Effect of vanadate on gene expression of the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic rats,” Journal of Biological Inorganic Chemistry, vol. 12, no. 8, pp. 1265–1273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. F. Dullaart, “Plasma lipoprotein abnormalities in type 1 (insulin-dependent) diabetes mellitus,” Netherlands Journal of Medicine, vol. 46, no. 1, pp. 44–54, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Erciyas, F. Taneli, B. Arslan, and Y. Uslu, “Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus,” Archives of Medical Research, vol. 35, no. 2, pp. 134–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Gallou, A. Ruelland, B. Legras, D. Maugendre, H. Allannic, and L. Cloarec, “Plasma malondialdehyde in type 1 and type 2 diabetic patients,” Clinica Chimica Acta, vol. 214, no. 2, pp. 227–234, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Vergès, “Lipid disorders in type 1 diabetes,” Diabetes and Metabolism, vol. 35, no. 5, pp. 353–360, 2009. View at Publisher · View at Google Scholar
  7. L. P. Bechmann, R. A. Hannivoort, G. Gerken, G. S. Hotamisligil, M. Trauner, and A. Canbay, “The interaction of hepatic lipid and glucose metabolism in liver diseases,” Journal of Hepatology, vol. 56, no. 4, pp. 952–964, 2012. View at Publisher · View at Google Scholar
  8. S. Nishikawa, K. Doi, H. Nakayama, and K. Uetsuka, “The effect of fasting on hepatic lipid accumulation and transcriptional regulation of lipid metabolism differs between C57BL/6J and BALB/cA mice fed a high-fat diet,” Toxicologic Pathology, vol. 36, no. 6, pp. 850–857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Bonen, S. E. Campbell, C. R. Benton et al., “Regulation of fatty acid transport by fatty acid translocase/CD36,” Proceedings of the Nutrition Society, vol. 63, no. 2, pp. 245–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Hamilton, “Fatty acid transport: difficult or easy?” Journal of Lipid Research, vol. 39, no. 3, pp. 467–481, 1998. View at Google Scholar · View at Scopus
  11. P. D. Berk, “Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome,” Hepatology, vol. 48, no. 5, pp. 1362–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Abumrad, C. Coburn, and A. Ibrahimi, “Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm,” Biochimica et Biophysica Acta, vol. 1441, no. 1, pp. 4–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Andersen, B. Lenhard, C. Whatling, P. Erikssson, and J. Odeberg, “Alternative promoter usage of the membrane glycoprotein CD36,” BMC Molecular Biology, vol. 7, no. 1, article 8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Su and N. A. Abumrad, “Cellular fatty acid uptake: a pathway under construction,” Trends in Endocrinology and Metabolism, vol. 20, no. 2, pp. 72–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. E. Blaak, “Fatty acid metabolism in obesity and type 2 diabetes mellitus,” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 753–760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. He, J. H. Lee, M. Febbraio, and W. Xie, “The emerging roles of fatty acid translocase/CD36 and the aryl hydrocarbon receptor in fatty liver disease,” Experimental Biology and Medicine, vol. 236, no. 10, pp. 1116–1121, 2011. View at Publisher · View at Google Scholar
  17. J. Zhou, M. Febbraio, T. Wada et al., “Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis,” Gastroenterology, vol. 134, no. 2, pp. 556.e1–567.e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Pascussi, S. Gerbal-Chaloin, C. Duret, M. Daujat-Chavanieu, M. J. Vilarem, and P. Maurel, “The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 1–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ibrahimi, A. Bonen, W. D. Blinn et al., “Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 26761–26766, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Wang, M. He, P. Yi et al., “Comparison of effects of vanadium absorbed by coprinus comatus with those of inorganic vanadium on bone in streptozotocin-diabetic rats,” Biological Trace Element Research, vol. 149, no. 3, pp. 391–398, 2012. View at Publisher · View at Google Scholar
  21. Y. B. Wei and X. D. Yang, “Synthesis, characterization and anti-diabetic therapeutic potential of a new benzyl acid-derivatized kojic acid vanadyl complex,” BioMetals, vol. 25, no. 6, pp. 1261–1268, 2012. View at Publisher · View at Google Scholar
  22. M. Li, D. Wei, W. Ding, B. Baruah, and D. C. Crans, “Anti-diabetic effects of cesium aqua (N,N′-ethylene(salicylideneiminato)-5-sulfonato) oxovanadium (IV) dihydrate in streptozotocin-induced diabetic rats,” Biological Trace Element Research, vol. 121, no. 3, pp. 226–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. A. Clark, A. L. Edel, C. E. Heyliger, and G. N. Pierce, “Effective control of glycemic status and toxicity in Zucker diabetic fatty rats with an orally administered vanadate compound,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 10, pp. 888–894, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Shisheva and Y. Shechter, “Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes,” Biochemistry, vol. 31, no. 34, pp. 8059–8063, 1992. View at Google Scholar · View at Scopus
  25. H. Degani, M. Gochin, S. J. D. Karlish, and Y. Shechter, “Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes,” Biochemistry, vol. 20, no. 20, pp. 5795–5799, 1981. View at Google Scholar · View at Scopus
  26. D. C. Crans, L. Yang, T. Jakusch, and T. Kiss, “Aqueous chemistry of ammonium (dipicolinato)oxovanadate(V): the first organic vanadium(V) insulin-mimetic compound,” Inorganic Chemistry, vol. 39, no. 20, pp. 4409–4416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Crans, M. Mahroof-Tahir, M. D. Johnson et al., “Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties: and effects in rats with STZ-induced diabetes,” Inorganica Chimica Acta, vol. 356, pp. 365–378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. C. Crans, J. J. Smee, E. Gaidamauskas, and L. Yang, “The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds,” Chemical Reviews, vol. 104, no. 2, pp. 849–902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Gupta, J. Raju, J. Prakash, and N. Z. Baquer, “Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate,” Diabetes Research and Clinical Practice, vol. 46, no. 1, pp. 1–7, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Li, W. Ding, J. J. Smee, B. Baruah, G. R. Willsky, and D. C. Crans, “Anti-diabetic effects of vanadium(III, IV, V)-chlorodipicolinate complexes in streptozotocin-induced diabetic rats,” BioMetals, vol. 22, no. 6, pp. 895–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Li, J. J. Smee, W. Ding, and D. C. Crans, “Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats,” Journal of Inorganic Biochemistry, vol. 103, no. 4, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Smee, J. A. Epps, K. Ooms et al., “Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties,” Journal of Inorganic Biochemistry, vol. 103, no. 4, pp. 575–584, 2009. View at Publisher · View at Google Scholar
  33. W. Ding, T. Hasegawa, H. Hosaka, D. Peng, K. Takahashi, and Y. Seko, “Effect of long-term treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus,” Biological Trace Element Research, vol. 80, no. 2, pp. 159–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti, and C. R. Kahn, “In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus,” Molecular and Cellular Biochemistry, vol. 153, no. 1-2, pp. 217–231, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. M. O. Leda, D. Carlos, M. C. Alcira, and N. G. Esther, “ALAS1 gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice,” Biochemical Journal, vol. 442, no. 2, pp. 303–310, 2012. View at Publisher · View at Google Scholar
  36. J. Meyerovitch, P. Rothenberg, Y. Shechter, S. Bonner-Weir, and C. R. Kahn, “Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus,” Journal of Clinical Investigation, vol. 87, no. 4, pp. 1286–1294, 1991. View at Google Scholar · View at Scopus
  37. J. Xue, W. Ding, and Y. Liu, “Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice,” Fitoterapia, vol. 81, no. 3, pp. 173–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Saeed, Y. Deng, and R. Dai, “Attenuation of biochemical parameters in streptozotocin-induced diabetic rats by oral administration of extracts and fractions of Cephalotaxus sinensis,” Journal of Clinical Biochemistry and Nutrition, vol. 42, no. 1, pp. 21–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Gylling, J. A. Tuominen, V. A. Koivisto, and T. A. Miettinen, “Cholesterol metabolism in type 1 diabetes,” Diabetes, vol. 53, no. 9, pp. 2217–2222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. P. E. T. Arkkila, P. J. Koskinen, I. M. Kantola, T. Rönnemaa, E. Seppänen, and J. S. Viikari, “Diabetic complications are associated with liver enzyme activities in people with type 1 diabetes,” Diabetes Research and Clinical Practice, vol. 52, no. 2, pp. 113–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Zafar, S. Naeem-ul-Hassan Naqvi, M. Ahmed, and Z. A. Kaim Khani, “Altered liver morphology and enzymes in streptozotocin-induced diabetic rats,” International Journal of Morphology, vol. 27, no. 3, pp. 719–725, 2009. View at Google Scholar
  42. G. R. Willsky, L. H. Chi, Y. Liang, D. P. Gaile, Z. Hu, and D. C. Crans, “Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate,” Physiological Genomics, vol. 26, no. 3, pp. 192–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Ohno, F. Horio, S. Tanaka, M. Terada, T. Namikawa, and J. Kitoh, “Fatty liver and hyperlipidemia in IDDM (insulin-dependent diabetes mellitus) of streptozotocin-treated shrews,” Life Sciences, vol. 66, no. 2, pp. 125–131, 1999. View at Google Scholar · View at Scopus
  44. I. Degirmenci, S. Kalender, M. C. Ustuner et al., “The effects of acarbose and Rumex patientia on liver ultrastructure in streptozotocin-induced diabetic (type II) rats,” Drugs under Experimental and Clinical Research, vol. 28, no. 6, pp. 229–234, 2002. View at Google Scholar · View at Scopus
  45. U. Julius, “Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia,” Experimental and Clinical Endocrinology and Diabetes, vol. 111, no. 5, pp. 246–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Boden, “Free fatty acids, insulin resistance, and type 2 diabetes mellitus,” Proceedings of the Association of American Physicians, vol. 111, no. 3, pp. 241–248, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Kovacs and M. Stumvoll, “Fatty acids and insulin resistance in muscle and liver,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 19, no. 4, pp. 625–635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. P. Holloway, V. Bezaire, G. J. F. Heigenhauser et al., “Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise,” Journal of Physiology, vol. 571, no. 1, pp. 201–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Febbraio, N. A. Abumrad, D. P. Hajjar et al., “A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism,” The Journal of Biological Chemistry, vol. 274, no. 27, pp. 19055–19062, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Sato, N. Takanashi, and K. Motojima, “Third promoter and differential regulation of mouse and human fatty acid translocase/CD36 genes,” Molecular and Cellular Biochemistry, vol. 299, no. 1-2, pp. 37–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. J. F. P. Luiken, Y. Arumugam, R. C. Bell et al., “Changes in fatty acid transport and transporters are related to the severity of insulin deficiency,” The American Journal of Physiology, vol. 283, no. 3, pp. E612–E621, 2002. View at Google Scholar · View at Scopus
  52. I. J. Goldberg and H. N. Ginsberg, “Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease,” Gastroenterology, vol. 130, no. 4, pp. 1343–1346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Kamijo-Ikemori, T. Sugaya, A. Sekizuka, K. Hirata, and K. Kimura, “Amelioration of diabetic tubulointerstitial damage in liver-type fatty acid-binding protein transgenic mice,” Nephrology Dialysis Transplantation, vol. 24, no. 3, pp. 788–800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Chabowski, J. Górski, J. J. F. P. Luiken, J. F. C. Glatz, and A. Bonen, “Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 77, no. 5-6, pp. 345–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Cheng, G. Liu, Q. Pan, S. Guo, and X. Yang, “Elevated expression of liver X receptor alpha (LXRα) in myocardium of streptozotocin-induced diabetic rats,” Inflammation, vol. 34, no. 6, pp. 698–706, 2011. View at Publisher · View at Google Scholar
  56. Y. Harano, K. Yasui, T. Toyama et al., “Fenofibrate, a peroxisome proliferator-activated receptor α agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver,” Liver International, vol. 26, no. 5, pp. 613–620, 2006. View at Publisher · View at Google Scholar · View at Scopus