Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2014 (2014), Article ID 187153, 13 pages
http://dx.doi.org/10.1155/2014/187153
Research Article

Adipocytes from New Zealand Obese Mice Exhibit Aberrant Proinflammatory Reactivity to the Stress Signal Heat Shock Protein 60

1Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
2German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany

Received 25 August 2013; Revised 29 November 2013; Accepted 3 December 2013; Published 5 February 2014

Academic Editor: Daisuke Koya

Copyright © 2014 Tina Märker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 33, supplement 1, pp. S62–S69, 2010. View at Publisher · View at Google Scholar
  2. T. Tuomi, “Type 1 and type 2 diabetes: what do they have in common?” Diabetes, vol. 54, supplement 2, pp. S40–S45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. I. Alexandraki, C. Piperi, P. D. Ziakas et al., “Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation,” The Journal of Clinical Immunology, vol. 28, no. 4, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Goldberg, “Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 9, pp. 3171–3182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. K. Snell-Bergeon, N. A. West, E. J. Mayer-Davis et al., “Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 6, pp. 2868–2876, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Schölin, A. Siegbahn, L. Lind et al., “CRP and IL-6 concentrations are associated with poor glycemic control despite preserved β-cell function during the first year after diagnosis of type 1 diabetes,” Diabetes Metabolism Research and Reviews, vol. 20, no. 3, pp. 205–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Devaraj, A. T. Cheung, I. Jialal et al., “Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications,” Diabetes, vol. 56, no. 11, pp. 2790–2796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Herder, J. Baumert, B. Thorand et al., “Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984–2002,” Diabetologia, vol. 49, no. 5, pp. 921–929, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Pradhan, “Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders,” Nutrition Reviews, vol. 65, no. 12, part 2, pp. S152–S156, 2007. View at Google Scholar · View at Scopus
  10. H. Kolb and T. Mandrup-Poulsen, “The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation,” Diabetologia, vol. 53, no. 1, pp. 10–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Shu, C. Benoist, and D. Mathis, “The immune system's involvement in obesity-driven type 2 diabetes,” Seminars in Immunology, vol. 24, no. 6, pp. 436–442, 2012. View at Publisher · View at Google Scholar
  12. K. E. Wellen and G. S. Hotamisligil, “Obesity-induced inflammatory changes in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1785–1788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Fontana, J. C. Eagon, M. E. Trujillo, P. E. Scherer, and S. Klein, “Visceral fat adipokine secretion is associated with systemic inflammation in obese humans,” Diabetes, vol. 56, no. 4, pp. 1010–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Chan, E. B. Rimm, G. A. Colditz, M. J. Stampfer, and W. C. Willett, “Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men,” Diabetes Care, vol. 17, no. 9, pp. 961–969, 1994. View at Google Scholar · View at Scopus
  15. G. A. Colditz, W. C. Willett, A. Rotnitzky, and J. E. Manson, “Weight gain as a risk factor for clinical diabetes mellitus in women,” Annals of Internal Medicine, vol. 122, no. 7, pp. 481–486, 1995. View at Google Scholar · View at Scopus
  16. T. J. Wilkin, “The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes,” Diabetologia, vol. 44, no. 7, pp. 914–922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Betts, J. Mulligan, P. Ward, B. Smith, and T. Wilkin, “Increasing body weight predicts the earlier onset of insulin-dependant diabetes in childhood: testing the “accelerator hypothesis” (2),” Diabetic Medicine, vol. 22, no. 2, pp. 144–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Christiansen, B. Richelsen, and J. M. Bruun, “Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects,” International Journal of Obesity, vol. 29, no. 1, pp. 146–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Fu, L. Luo, N. Luo, and W. T. Garvey, “Proinflammatory cytokine production and insulin sensitivity regulated by overexpression of resistin in 3T3-L1 adipocytes,” Nutrition & Metabolism, vol. 3, article 28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Schäffler, U. Müller-Ladner, J. Schölmerich, and C. Büchler, “Role of adipose tissue as an inflammatory organ in human diseases,” Endocrine Reviews, vol. 27, no. 5, pp. 449–467, 2006. View at Publisher · View at Google Scholar
  21. E. Gülden, S. Mollérus, J. Brüggemann, V. Burkart, and C. Habich, “Heat shock protein 60 induces inflammatory mediators in mouse adipocytes,” FEBS Letters, vol. 582, no. 18, pp. 2731–2736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Gülden, T. Märker, J. Kriebel, V. Kolb-Bachofen, V. Burkart, and C. Habich, “Heat shock protein 60: evidence for receptor-mediated induction of proinflammatory mediators during adipocyte differentiation,” FEBS Letters, vol. 583, no. 17, pp. 2877–2881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Märker, J. Kriebel, U. Wohlrab, and C. Habich, “Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction,” Biochemical and Biophysical Research Communications, vol. 391, no. 4, pp. 1634–1640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Fink, “Chaperone-mediated protein folding,” Physiological Reviews, vol. 79, no. 2, pp. 425–449, 1999. View at Google Scholar · View at Scopus
  25. K. Brudzynski, “Insulitis-caused redistribution of heat-shock protein HSP60 inside β-cells correlates with induction of HSP60 autoantibodies,” Diabetes, vol. 42, no. 6, pp. 908–913, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. J. Ma, Y. Lu, J. Hou et al., “Vaccination of non-obese diabetic mice with a fragment of peptide P277 attenuates insulin-dependent diabetes mellitus,” International Immunopharmacology, vol. 11, no. 9, pp. 1298–1302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Devaraj, M. R. Dasu, S. H. Park, and I. Jialal, “Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes,” Diabetologia, vol. 52, no. 8, pp. 1665–1668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Raz, D. Elias, A. Avron, M. Tamir, M. Metzger, and I. R. Cohen, “β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial,” The Lancet, vol. 358, no. 9295, pp. 1749–1753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. V. A. L. Huurman, P. E. Van Der Meide, G. Duinkerken et al., “Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes,” Clinical & Experimental Immunology, vol. 152, no. 3, pp. 488–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. Dasu, S. Devaraj, S. Park, and I. Jialal, “Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects,” Diabetes Care, vol. 33, no. 4, pp. 861–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Märker, H. Sell, P. Zillessen et al., “Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance,” Diabetes, vol. 61, no. 3, pp. 615–625, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Chaparro and T. P. Dilorenzo, “An update on the use of NOD mice to study autoimmune (Type 1) diabetes,” Expert Review of Clinical Immunology, vol. 6, no. 6, pp. 939–955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F.-C. Chou, H.-Y. Chen, S.-J. Chen, M.-C. Fang, and H.-K. Sytwu, “Rodent models for investigating the dysregulation of immune responses in type 1 diabetes,” Journal of Diabetes Research, vol. 2013, Article ID 138412, 8 pages, 2013. View at Publisher · View at Google Scholar
  34. H.-G. Joost, “The genetic basis of obesity and type 2 diabetes: lessons from the New Zealand obese mouse, a polygenic model of the metabolic syndrome,” Results and Problems in Cell Differentiation, vol. 52, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Habich, K. Kempe, R. Van Der Zee, V. Burkart, and H. Kolb, “Different heat shock protein 60 species share pro-inflammatory activity but not binding sites on macrophages,” FEBS Letters, vol. 533, no. 1–3, pp. 105–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Gabriely, X. H. Ma, X. M. Yang et al., “Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process?” Diabetes, vol. 51, no. 10, pp. 2951–2958, 2002. View at Google Scholar · View at Scopus
  37. S. K. Fried, D. A. Bunkin, and A. S. Greenberg, “Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 3, pp. 847–850, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Wada, S. Shimba, and M. Tezuka, “Transcriptional regulation of the hypoxia inducible factor-2α (HIF-2α) gene during adipose differentiation in 3T3-L1 cells,” Biological & Pharmaceutical Bulletin, vol. 29, no. 1, pp. 49–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Harkins, N. Moustaid-Moussa, Y.-J. Chung et al., “Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice,” Journal of Nutrition, vol. 134, no. 10, pp. 2673–2677, 2004. View at Google Scholar · View at Scopus
  40. C. Habich, K. Baumgart, H. Kolb, and V. Burkart, “The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins,” The Journal of Immunology, vol. 168, no. 2, pp. 569–576, 2002. View at Google Scholar · View at Scopus
  41. C. Habich and V. Burkart, “Heat shock protein 60: regulatory role on innate immune cells,” Cellular and Molecular Life Sciences, vol. 64, no. 6, pp. 742–751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Charrière, B. Cousin, E. Arnaud et al., “Preadipocyte conversion to macrophage: evidence of plasticity,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9850–9855, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Herberg and D. L. Coleman, “Laboratory animals exhibiting obesity and diabetes syndromes,” Metabolism, vol. 26, no. 1, pp. 59–99, 1977. View at Google Scholar · View at Scopus
  44. M. Rincón and R. J. Davis, “Regulation of the immune response by stress-activated protein kinases,” Immunological Reviews, vol. 228, no. 1, pp. 212–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. G. Baker, M. S. Hayden, and S. Ghosh, “NF-κB, inflammation, and metabolic disease,” Cell Metabolism, vol. 13, no. 1, pp. 11–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Bost, M. Aouadi, L. Caron, and B. Binétruy, “The role of MAPKs in adipocyte differentiation and obesity,” Biochimie, vol. 87, no. 1, pp. 51–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Hoesel and J. A. Schmid, “The complexity of NF-κB signaling in inflammation and cancer,” Molecular Cancer, vol. 12, article 86, 2013. View at Publisher · View at Google Scholar
  48. J. Zhang, N. Zhu, Q. Wang et al., “MEKK3 overexpression contributes to the hyperresponsiveness of IL-12–overproducing cells and CD4+ T conventional cells in nonobese diabetic mice,” The Journal of Immunology, vol. 185, no. 6, pp. 3554–3563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Zhang, K. V. Salojin, and T. L. Delovitch, “CD28 co-stimulation restores T cell responsiveness in NOD mice by overcoming deficiencies in Rac-1/p38 mitogen-activated protein kinase signaling and IL-2 and IL-4 gene transcription,” International Immunology, vol. 13, no. 3, pp. 377–384, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Liu and D. Beller, “Aberrant production of IL-12 by macrophages from several autoimmune-prone mouse strains is characterized by intrinsic and unique patterns of NF-κB expression and binding to the IL-12 p40 promoter,” The Journal of Immunology, vol. 169, no. 1, pp. 581–586, 2002. View at Google Scholar · View at Scopus
  51. J. Liu and D. I. Beller, “Distinct pathways for NF-κB regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains,” The Journal of Immunology, vol. 170, no. 9, pp. 4489–4496, 2003. View at Google Scholar · View at Scopus
  52. W. Becker, R. Kluge, T. Kantner et al., “Differential hepatic gene expression in a polygenic mouse model with insulin resistance and hyperglycemia: evidence for a combined transcriptional dysregulation of gluconeogenesis and fatty acid synthesis,” Journal of Molecular Endocrinology, vol. 32, no. 1, pp. 195–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J.-P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Google Scholar · View at Scopus
  54. S. De Ferranti and D. Mozaffarian, “The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences,” Clinical Chemistry, vol. 54, no. 6, pp. 945–955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Meijer, M. de Vries, S. Al-Lahham et al., “Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages,” PLoS One, vol. 6, no. 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. G. Pockley, R. Wu, C. Lemne, R. Kiessling, U. De Faire, and J. Frostegård, “Circulating heat shock protein 60 is associated with early cardiovascular disease,” Hypertension, vol. 36, no. 2, pp. 303–307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. C.-T. C. Wu, L.-S. Ou, K.-W. Yeh, W.-I. Lee, and J.-L. Huang, “Serum heat shock protein 60 can predict remission of flare-up in juvenile idiopathic arthritis,” Clinical Rheumatology, vol. 30, no. 7, pp. 959–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. D. T. Dudley, L. Pang, S. J. Decker, A. J. Bridges, and A. R. Saltiel, “A synthetic inhibitor of the mitogen-activated protein kinase cascade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7686–7689, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. Y.-Z. Lin, S. Yao, R. A. Veach, T. R. Torgerson, and J. Hawiger, “Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence,” The Journal of Biological Chemistry, vol. 270, no. 24, pp. 14255–14258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. N.-H. Cho, S.-Y. Seong, M.-S. Huh, N.-H. Kim, M.-S. Choi, and I.-S. Kim, “Induction of the gene encoding macrophage chemoattractant protein 1 by Orientia tsutsugamushi in human endothelial cells involves activation of transcription factor activator protein 1,” Infection and Immunity, vol. 70, no. 9, pp. 4841–4850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Kick, G. Messer, A. Goetz, G. Plewig, and P. Kind, “Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-κB DNA binding,” Cancer Research, vol. 55, no. 11, pp. 2373–2379, 1995. View at Google Scholar · View at Scopus
  62. S. Akira, H. Isshiki, T. Sugita et al., “A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family,” The EMBO Journal, vol. 9, no. 6, pp. 1897–1906, 1990. View at Google Scholar · View at Scopus