Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2014 (2014), Article ID 726861, 16 pages
http://dx.doi.org/10.1155/2014/726861
Review Article

Exercise Induced Adipokine Changes and the Metabolic Syndrome

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

Received 25 July 2013; Accepted 18 October 2013; Published 19 January 2014

Academic Editor: Caroline J. Magri

Copyright © 2014 Saeid Golbidi and Ismail Laher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Fujita, “Insulin resistance and salt-sensitive hypertension in metabolic syndrome,” Nephrology Dialysis Transplantation, vol. 22, no. 11, pp. 3102–3107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Fujita, “Aldosterone in salt-sensitive hypertension and metabolic syndrome,” Journal of Molecular Medicine, vol. 86, no. 6, pp. 729–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. American Diabetes Association, 2008, http://www.diabetes.org/diabetes-basics/diabetes-statistics.
  4. Y.-W. Park, S. Zhu, L. Palaniappan, S. Heshka, M. R. Carnethon, and S. B. Heymsfield, “The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994,” Archives of Internal Medicine, vol. 163, no. 4, pp. 427–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. I. D. Caterson, V. Hubbard, G. A. Bray et al., “Prevention conference VII: obesity, a worldwide epidemic related to heart disease and stroke: group III: worldwide comorbidities of obesity,” Circulation, vol. 110, no. 18, pp. e476–e483, 2004. View at Google Scholar · View at Scopus
  6. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Galassi, K. Reynolds, and J. He, “Metabolic syndrome and risk of cardiovascular disease: a meta-analysis,” The American Journal of Medicine, vol. 119, no. 10, pp. 812–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Google Scholar · View at Scopus
  9. G. M. Reaven, “Insulin resistance: the link between obesity and cardiovascular disease,” Medical Clinics of North America, vol. 95, no. 5, pp. 875–892, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. You, B. J. Nicklas, J. Ding et al., “The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity,” Journals of Gerontology A, vol. 63, no. 4, pp. 414–419, 2008. View at Google Scholar · View at Scopus
  11. A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1154–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. LaMonte, S. N. Blair, and T. S. Church, “Physical activity and diabetes prevention,” Journal of Applied Physiology, vol. 99, pp. 1205–1213, 2005. View at Google Scholar
  13. H. Bruunsgaard, “Physical activity and modulation of systemic low-level inflammation,” Journal of Leukocyte Biology, vol. 78, no. 4, pp. 819–835, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. I. Moldoveanu, R. J. Shephard, and P. N. Shek, “The cytokine response to physical activity and training,” Sports Medicine, vol. 31, no. 2, pp. 115–144, 2001. View at Google Scholar · View at Scopus
  15. C. Kasapis and P. D. Thompson, “The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1563–1569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. T.-S. Tsao, H. E. Murrey, C. Hug, D. H. Lee, and H. F. Lodish, “Oligomerization state-dependent activation of NF-κB signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30),” Journal of Biological Chemistry, vol. 277, no. 33, pp. 29359–29362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. U. B. Pajvani, X. Du, T. P. Combs et al., “Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin: implications for metabolic regulation and bioactivity,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9073–9085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Suzuki, E. M. Wilson-Kubalek, D. Wert, T.-S. Tsao, and D. H. Lee, “The oligomeric structure of high molecular weight adiponectin,” FEBS Letters, vol. 581, no. 5, pp. 809–814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. U. B. Pajvani, M. Hawkins, T. P. Combs et al., “Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12152–12162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. K. Oh, T. Ciaraldi, and R. R. Henry, “Adiponectin in health and disease,” Diabetes, Obesity and Metabolism, vol. 9, no. 3, pp. 282–289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Rizza, F. Gigli, A. Galli et al., “Adiponectin isoforms in elderly patients with or without coronary artery disease,” Journal of the American Geriatrics Society, vol. 58, no. 4, pp. 702–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Almeda-Valdes, D. Cuevas-Ramos, R. Mehta et al., “Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance,” Cardiovascular Diabetology, vol. 9, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Mazaki-Tovi, H. Kanety, and E. Sivan, “Adiponectin and human pregnancy,” Current Diabetes Reports, vol. 5, no. 4, pp. 278–281, 2005. View at Google Scholar · View at Scopus
  24. W.-S. Yang, W.-J. Lee, T. Funahashi et al., “Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3815–3819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Mavri, P. Poredoš, D. Šuran, B. Gaborit, I. Juhan-Vague, and P. Poredoš, “Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting,” Heart and Vessels, vol. 26, no. 1, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Ohashi, N. Ouchi, and Y. Matsuzawa, “Anti-inflammatory and anti-atherogenic properties of adiponectin,” Biochimie, vol. 94, pp. 2137–2142, 2012. View at Publisher · View at Google Scholar
  27. K. J. Mather, T. Funahashi, Y. Matsuzawa et al., “Adiponectin, change in adiponectin, and progression to diabetes in the diabetes prevention program,” Diabetes, vol. 57, no. 4, pp. 980–986, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. B. Snijder, R. J. Heine, J. C. Seidell et al., “Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women the hoorn study,” Diabetes Care, vol. 29, no. 11, pp. 2498–2503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Krakoff, T. Funahashi, C. D. A. Stehouwer et al., “Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian,” Diabetes Care, vol. 26, no. 6, pp. 1745–1751, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, “The adipocyte-secreted protein Acrp30 enhances hepatic insulin action,” Nature Medicine, vol. 7, no. 8, pp. 947–953, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Okamoto, M. Ohara-Imaizumi, N. Kubota et al., “Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration,” Diabetologia, vol. 51, no. 5, pp. 827–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Musso, R. Gambino, G. Biroli et al., “Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis,” The American Journal of Gastroenterology, vol. 100, no. 11, pp. 2438–2446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Retnakaran, A. J. G. Hanley, N. Raif et al., “Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications,” Diabetologia, vol. 48, no. 5, pp. 993–1001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Ouchi, S. Kihara, Y. Arita et al., “Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway,” Circulation, vol. 102, no. 11, pp. 1296–1301, 2000. View at Google Scholar · View at Scopus
  36. T. Yokota, K. Oritani, I. Takahashi et al., “Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages,” Blood, vol. 96, no. 5, pp. 1723–1732, 2000. View at Google Scholar · View at Scopus
  37. Y. Okamoto, S. Kihara, N. Ouchi et al., “Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice,” Circulation, vol. 106, no. 22, pp. 2767–2770, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Shimada, T. Miyazaki, and H. Daida, “Adiponectin and atherosclerotic disease,” Clinica Chimica Acta, vol. 344, no. 1-2, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Yamauchi, J. Kamon, H. Waki et al., “Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2461–2468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. R. Nawrocki, M. W. Rajala, E. Tomas et al., “Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists,” Journal of Biological Chemistry, vol. 281, no. 5, pp. 2654–2660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Fruebis, T.-S. Tsao, S. Javorschi et al., “Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 2005–2010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Yamauchi, Y. Nio, T. Maki et al., “Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions,” Nature Medicine, vol. 13, no. 3, pp. 332–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Hara, P. Boutin, Y. Mori et al., “Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population,” Diabetes, vol. 51, pp. 536–540, 2002. View at Google Scholar · View at Scopus
  44. A. H. Kissebah, G. E. Sonnenberg, J. Myklebust et al., “Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14478–14483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Kondo, L. Shimomura, Y. Matsukawa et al., “Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome,” Diabetes, vol. 51, no. 7, pp. 2325–2328, 2002. View at Google Scholar · View at Scopus
  46. M. Stumvoll, O. Tschritter, A. Fritsche et al., “Association of the T-G polymorphism in adiponectin (Exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 37–41, 2002. View at Google Scholar · View at Scopus
  47. C. Menzaghi, T. Ercolino, R. D. Paola et al., “A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome,” Diabetes, vol. 51, no. 7, pp. 2306–2312, 2002. View at Google Scholar · View at Scopus
  48. M. A. Ferguson, L. J. White, S. McCoy, H.-W. Kim, T. Petty, and J. Wilsey, “Plasma adiponectin response to acute exercise in healthy subjects,” European Journal of Applied Physiology, vol. 91, no. 2-3, pp. 324–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Punyadeera, A. H. G. Zorenc, R. Koopman et al., “The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle,” European Journal of Endocrinology, vol. 152, no. 3, pp. 427–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Bobbert, U. Wegewitz, L. Brechtel et al., “Adiponectin oligomers in human serum during acute and chronic exercise: relation to lipid metabolism and insulin sensitivity,” International Journal of Sports Medicine, vol. 28, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. R. Kraemer and V. D. Castracane, “Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin,” Experimental Biology and Medicine, vol. 232, no. 2, pp. 184–194, 2007. View at Google Scholar · View at Scopus
  52. A. Z. Jamurtas, V. Theocharis, G. Koukoulis et al., “The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males,” European Journal of Applied Physiology, vol. 97, no. 1, pp. 122–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Numao, Y. Katayama, Y. Hayashi, T. Matsuo, and K. Tanaka, “Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men,” Metabolism, vol. 60, no. 2, pp. 186–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. T. J. Saunders, A. Palombella, K. A. McGuire, P. M. Janiszewski, J. P. Després, and R. Ross, “Acute exercise increases adiponectin levels in abdominally obese men,” Nutrition and Metabolism, vol. 2012, Article ID 148729, 6 pages, 2012. View at Publisher · View at Google Scholar
  55. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Margetic, C. Gazzola, G. G. Pegg, and R. A. Hill, “Leptin: a review of its peripheral actions and interactions,” International Journal of Obesity, vol. 26, no. 11, pp. 1407–1433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Matarese, S. Moschos, and C. S. Mantzoros, “Leptin in immunology,” Journal of Immunology, vol. 174, no. 6, pp. 3137–3142, 2005. View at Google Scholar · View at Scopus
  58. A. M. Brennan and C. S. Mantzoros, “Drug insight: the role of leptin in human physiology and pathophysiology: emerging clinical applications,” Nature Clinical Practice Endocrinology and Metabolism, vol. 2, no. 6, pp. 318–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Ge, L. Huang, T. Pourbahrami, and C. Li, “Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo,” Journal of Biological Chemistry, vol. 277, no. 48, pp. 45898–45903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Hileman, D. D. Pierroz, H. Masuzaki et al., “Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity,” Endocrinology, vol. 143, no. 3, pp. 775–783, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. S. H. Bates and M. G. Myers Jr., “The role of leptin receptor signaling in feeding and neuroendocrine function,” Trends in Endocrinology and Metabolism, vol. 14, no. 10, pp. 447–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. Q. Gao and T. L. Horvath, “Cross-talk between estrogen and leptin signaling in the hypothalamus,” The American Journal of Physiology, vol. 294, no. 5, pp. E817–E826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Yang and L. A. Barouch, “Leptin signaling and obesity: cardiovascular consequences,” Circulation Research, vol. 101, no. 6, pp. 545–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. H. Bates and M. G. Myers, “The role of leptin-STAT3 signaling in neuroendocrine function: an integrative perspective,” Journal of Molecular Medicine, vol. 82, no. 1, pp. 12–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Kloek, A. K. Haq, S. L. Dunn, H. J. Lavery, A. S. Banks, and M. G. Myers Jr., “Regulation of Jak kinases by intracellular leptin receptor sequences,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 41547–41555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. K. D. Niswender, B. Gallis, J. E. Blevins, M. A. Corson, M. W. Schwartz, and D. G. Baskin, “Immunocytochemical detection of phosphatidylinositol 3-kinase activation by insulin and leptin,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 3, pp. 275–283, 2003. View at Google Scholar · View at Scopus
  67. C. S. Mantzoros, F. Magkos, M. Brinkoetter et al., “Leptin in human physiology and pathophysiology,” The American Journal of Physiology, vol. 301, no. 4, pp. E567–E584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Chan, K. Heist, A. M. DePaoli, J. D. Veldhuis, and C. S. Mantzoros, “The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men,” Journal of Clinical Investigation, vol. 111, no. 9, pp. 1409–1421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Rosenbaum, R. Goldsmith, D. Bloomfield et al., “Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3579–3586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Chan and C. S. Mantzoros, “Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis,” Pituitary, vol. 4, no. 1-2, pp. 87–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. K. Miller, M. S. Parulekar, E. Schoenfeld et al., “Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 7, pp. 2309–2312, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. C. S. Mantzoros, “The role of leptin and hypothalamic neuropeptides in energy homeostasis: update on leptin in obesity,” Growth Hormone and IGF Research, vol. 11, no. 1, pp. S85–S89, 2001. View at Google Scholar · View at Scopus
  73. S. Moschos, J. L. Chan, and C. S. Mantzoros, “Leptin and reproduction: a review,” Fertility and Sterility, vol. 77, no. 3, pp. 433–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. M. G. Myers, M. A. Cowley, and H. Münzberg, “Mechanisms of leptin action and leptin resistance,” Annual Review of Physiology, vol. 70, pp. 537–556, 2008. View at Google Scholar
  75. K. El-Haschimi, D. D. Pierroz, S. M. Hileman, C. Bjørbæk, and J. S. Flier, “Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity,” Journal of Clinical Investigation, vol. 105, no. 12, pp. 1827–1832, 2000. View at Google Scholar · View at Scopus
  76. H. Münzberg and M. G. Myers Jr., “Molecular and anatomical determinants of central leptin resistance,” Nature Neuroscience, vol. 8, pp. 566–570, 2005. View at Google Scholar
  77. T. Fuentes, I. Ara, A. Guadalupe-Grau et al., “Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance,” Experimental Physiology, vol. 95, no. 1, pp. 160–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. L. E. Stefanyk and D. J. Dyck, “The interaction between adipokines, diet and exercise on muscle insulin sensitivity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 3, pp. 255–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. B. Jorgensen, H. M. O'Neill, L. Sylow et al., “Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity,” Diabetes, vol. 62, pp. 56–64, 2013. View at Publisher · View at Google Scholar
  80. T. G. Kirchgessner, K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Tumor necrosis factor-α contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2777–2782, 1997. View at Google Scholar · View at Scopus
  81. C. S. Mantzoros, S. Moschos, I. Avramopoulos et al., “Leptin concentrations in relation to body mass index and the tumor necrosis factor-α system in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 10, pp. 3408–3413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Trayhurn, M. E. A. Thomas, J. S. Duncan, S. Duncan, and D. Vernon Rayner, “Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese (ob/ob) mice,” FEBS Letters, vol. 368, no. 3, pp. 488–490, 1995. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Saladin, P. De Vos, M. Guerre-Millo et al., “Transient increase in obese gene expression after food intake or insulin administration,” Nature, vol. 377, no. 6549, pp. 527–529, 1995. View at Google Scholar · View at Scopus
  84. C. M. Halleux, I. Servais, B. A. Reul, R. Detry, and S. M. Brichard, “Multihormonal control of ob gene expression and leptin secretion from cultured human visceral adipose tissue: increased responsiveness to glucocorticoids in obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 902–910, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. R. R. Kraemer, H. Chu, and V. Daniel Castracane, “Leptin and exercise,” Experimental Biology and Medicine, vol. 227, no. 9, pp. 701–708, 2002. View at Google Scholar · View at Scopus
  86. A. Bouassida, K. Chamari, M. Zaouali, Y. Feki, A. Zbidi, and Z. Tabka, “Review on leptin and adiponectin responses and adaptations to acute and chronic exercise,” British Journal of Sports Medicine, vol. 44, no. 9, pp. 620–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Zaccaria, A. Ermolao, G. S. Roi, P. Englaro, G. Tegon, and M. Varnier, “Leptin reduction after endurance races differing in duration and energy expenditure,” European Journal of Applied Physiology, vol. 87, no. 2, pp. 108–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. R. R. Kraemer, L. G. Johnson, R. Haltom et al., “Serum leptin concentrations in response to acute exercise in postmenopausal women with and without hormone replacement therapy,” Proceedings of the Society for Experimental Biology and Medicine, vol. 221, no. 3, pp. 171–177, 1999. View at Google Scholar · View at Scopus
  89. J. A. Kanaley, L. M. Fenicchia, C. S. Miller et al., “Resting leptin responses to acute and chronic resistance training in type 2 diabetic men and women,” International Journal of Obesity, vol. 25, no. 10, pp. 1474–1480, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. N. D. Barwell, D. Malkova, C. N. Moran et al., “Exercise training has greater effects on insulin sensitivity in daughters of patients with type 2 diabetes than in women with no family history of diabetes,” Diabetologia, vol. 51, no. 10, pp. 1912–1919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Clément, N. Viguerie, C. Poitou et al., “Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects,” The FASEB Journal, vol. 18, no. 14, pp. 1657–1669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  93. P. A. Kern, M. Saghizadeh, J. M. Ong, R. J. Bosch, R. Deem, and R. B. Simsolo, “The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2111–2119, 1995. View at Google Scholar · View at Scopus
  94. K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. M.-F. Hivert, L. M. Sullivan, C. S. Fox et al., “Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 8, pp. 3165–3172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Mishima, A. Kuyama, A. Tada, K. Takahashi, T. Ishioka, and M. Kibata, “Relationship between serum tumor necrosis factor-α and insulin resistance in obese men with Type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 52, no. 2, pp. 119–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. G. Winkler, F. Salamon, G. Harmos et al., “Elevated serum tumor necrosis factor-alpha concentrations and bioactivity in Type 2 diabetics and patients with android type obesity,” Diabetes Research and Clinical Practice, vol. 42, no. 3, pp. 169–174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Saghizadeh, J. M. Ong, W. T. Garvey, R. R. Henry, and P. A. Kern, “The expression of TNFα by human muscle: relationship to insulin resistance,” Journal of Clinical Investigation, vol. 97, no. 4, pp. 1111–1116, 1996. View at Google Scholar · View at Scopus
  99. A. M. Diehl, “Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease,” Clinics in Liver Disease, vol. 8, no. 3, pp. 619–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. K. T. Uysal, S. M. Wiesbrock, and G. S. Hotamisligil, “Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α- mediated insulin resistance in genetic obesity,” Endocrinology, vol. 139, no. 12, pp. 4832–4838, 1998. View at Google Scholar · View at Scopus
  101. A. Gastaldelli and G. Basta, “Ectopic fat and cardiovascular disease: what is the link?” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 7, pp. 481–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Katsuki, Y. Sumida, H. Urakawa et al., “Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance,” Diabetes Care, vol. 26, no. 8, pp. 2341–2344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Gabriely and N. Barzilai, “Surgical removal of visceral adipose tissue: effects on insulin action,” Current Diabetes Reports, vol. 3, no. 3, pp. 201–206, 2003. View at Google Scholar · View at Scopus
  104. B. L. Wajchenberg, “Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome,” Endocrine Reviews, vol. 21, no. 6, pp. 697–738, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. M. M. Ibrahim, “Subcutaneous and visceral adipose tissue: structural and functional differences,” Obesity Reviews, vol. 11, no. 1, pp. 11–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. G. N. Chaldakov, I. S. Stankulov, M. Hristova, and P. I. Ghenev, “Adipobiology of disease: adipokines and adipokine-targeted pharmacology,” Current Pharmaceutical Design, vol. 9, no. 12, pp. 1023–1031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. P. D. Berk, S. L. Zhou, M. Bradbury, D. Stump, C. L. Kiang, and L. M. Isola, “Regulated membrane transport of free fatty acids in adipocytes: role in obesity and non-insulin dependent diabetes mellitus,” Transactions of the American Clinical and Climatological Association, vol. 108, pp. 26–43, 1996. View at Google Scholar · View at Scopus
  108. C. R. Bruce and D. J. Dyck, “Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-α,” The American Journal of Physiology, vol. 287, no. 4, pp. E616–E621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Schulze-Osthoff, A. C. Bakker, B. Vanhaesebroeck, R. Beyaert, W. A. Jacob, and W. Fiers, “Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation,” Journal of Biological Chemistry, vol. 267, no. 8, pp. 5317–5323, 1992. View at Google Scholar · View at Scopus
  110. J. C. Bournat and C. W. Brown, “Mitochondrial dysfunction in obesity,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 446–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. J. J. Lemasters, T. Qian, C. A. Bradham et al., “Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death,” Journal of Bioenergetics and Biomembranes, vol. 31, no. 4, pp. 305–319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Joshi-Barve, S. S. Barve, W. Butt, J. Klein, and C. J. McClain, “Inhibition of proteasome function leads to NF-κB-independent IL-8 expression in human hepatocytes,” Hepatology, vol. 38, no. 5, pp. 1178–1187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. F. Mattusch, B. Dufaux, O. Heine, I. Mertens, and R. Rost, “Reduction of the plasma concentration of C-reactive protein following nine months of endurance training,” International Journal of Sports Medicine, vol. 21, no. 1, pp. 21–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Festa, R. D'Agostino Jr., G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS),” Circulation, vol. 102, no. 1, pp. 42–47, 2000. View at Google Scholar · View at Scopus
  115. E. P. Plaisance and P. W. Grandjean, “Physical activity and high-sensitivity C-reactive protein,” Sports Medicine, vol. 36, no. 5, pp. 443–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. K. E. Fallon, S. K. Fallon, and T. Boston, “The acute phase response and exercise: court and field sports,” British Journal of Sports Medicine, vol. 35, no. 3, pp. 170–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. J. M. Fernández-Real and W. Ricart, “Insulin resistance and chronic cardiovascular inflammatory syndrome,” Endocrine Reviews, vol. 24, no. 3, pp. 278–301, 2003. View at Google Scholar · View at Scopus
  118. P. Welsh, E. Polisecki, M. Robertson et al., “Unraveling the directional link between adiposity and inflammation: a bidirectional mendelian randomization approach,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. W. Fiers, “Tumor necrosis factor: characterization at the molecular, cellular and in vivo level,” FEBS Letters, vol. 285, no. 2, pp. 199–212, 1991. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Keller, P. Keller, M. Giralt, J. Hidalgo, and B. K. Pedersen, “Exercise normalises overexpression of TNF-α in knockout mice,” Biochemical and Biophysical Research Communications, vol. 321, no. 1, pp. 179–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. T. van der Poll, S. M. Coyle, K. Barbosa, C. C. Braxton, and S. F. Lowry, “Epinephrine inhibits tumor necrosis factor-α and potentiates interleukin 10 production during human endotoxemia,” Journal of Clinical Investigation, vol. 97, no. 3, pp. 713–719, 1996. View at Google Scholar · View at Scopus
  122. B. J. Nicklas, T. You, and M. Pahor, “Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training,” Canadian Medical Association Journal, vol. 172, no. 9, pp. 1199–1209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. R. L. Bradley, J. Y. Jeon, F.-F. Liu, and E. Maratos-Flier, “Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice,” The American Journal of Physiology, vol. 295, no. 3, pp. E586–E594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. V. J. Vieira, R. J. Valentine, K. R. Wilund, N. Antao, T. Baynard, and J. A. Woods, “Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice,” The American Journal of Physiology, vol. 296, no. 5, pp. E1164–E1171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. T. Sakurai, T. Izawa, T. Kizaki et al., “Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 605–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Lutoslawska, “Interleukin-6 as an adipokine and myokine: the regulatory role of cytokine in adipose tissue and skeletal muscle metabolism,” Human Movement, vol. 13, pp. 372–379, 2012. View at Publisher · View at Google Scholar
  127. B. Vozarova, C. Weyer, K. Hanson, P. A. Tataranni, C. Bogardus, and R. E. Pratley, “Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion,” Obesity Research, vol. 9, no. 7, pp. 414–417, 2001. View at Google Scholar · View at Scopus
  128. F. Oberhauser, D. M. Schulte, M. Faust, H. Güdelhöfer, M. Hahn, and N. Müller, “Weight loss due to very low calorie diet differentially affects insulin sensitivity and interleukin-6 serum levels in non-diabetic obese human subjects,” Hormone and Metabolic Research, vol. 44, pp. 465–470, 2012. View at Publisher · View at Google Scholar
  129. A. R. Moschen, C. Molnar, S. Geiger et al., “Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor a expression,” Gut, vol. 59, no. 9, pp. 1259–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. J.-M. Fernandez-Real, M. Vayreda, C. Richart et al., “Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1154–1159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. C. Tsigos, D. A. Papanicolaou, I. Kyrou, R. Defensor, C. S. Mitsiadis, and G. P. Chrousos, “Dose-dependent effects of recombinant human interleukin-6 on glucose regulation,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 12, pp. 4167–4170, 1997. View at Google Scholar · View at Scopus
  132. V. Rotter, I. Nagaev, and U. Smith, “Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 45777–45784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. J. J. Senn, P. J. Klover, I. A. Nowak, and R. A. Mooney, “Interleukin-6 induces cellular insulin resistance in hepatocytes,” Diabetes, vol. 51, no. 12, pp. 3391–3399, 2002. View at Google Scholar · View at Scopus
  134. A. L. Carey, G. R. Steinberg, S. L. Macaulay et al., “Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase,” Diabetes, vol. 55, no. 10, pp. 2688–2697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. A. G. Holmes, J. L. Mesa, B. A. Neill et al., “Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats,” Journal of Endocrinology, vol. 198, no. 2, pp. 367–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. D. C. Nieman, J. M. Davis, D. A. Henson et al., “Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run,” Journal of Applied Physiology, vol. 94, no. 5, pp. 1917–1925, 2003. View at Google Scholar · View at Scopus
  137. C. Keller, A. Steensberg, H. Pilegaard et al., “Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content,” The FASEB Journal, vol. 15, no. 14, pp. 2748–2750, 2001. View at Google Scholar · View at Scopus
  138. C. Keller, A. Steensberg, A. K. Hansen, C. P. Fischer, P. Plomgaard, and B. K. Pedersen, “Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle,” Journal of Applied Physiology, vol. 99, no. 6, pp. 2075–2079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Langberg, J. L. Olesen, C. Gemmer, and M. Kjær, “Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans,” Journal of Physiology, vol. 542, no. 3, pp. 985–990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Steensberg, M. A. Febbraio, T. Osada et al., “Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content,” Journal of Physiology, vol. 537, no. 2, pp. 633–639, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. C. P. Fischer, “Interleukin-6 in acute exercise and training: what is the biological relevance?” Exercise Immunology Review, vol. 12, pp. 6–33, 2006. View at Google Scholar · View at Scopus
  142. E. W. Petersen, A. L. Carey, M. Sacchetti et al., “Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro,” The American Journal of Physiology, vol. 288, no. 1, pp. E155–E162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. V. Wallenius, K. Wallenius, B. Ahrén et al., “Interleukin-6-deficient mice develop mature-onset obesity,” Nature Medicine, vol. 8, no. 1, pp. 75–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. E. Wolsk, H. Mygind, T. S. Grøndahl, B. K. Pedersen, and G. van Hall, “IL-6 selectively stimulates fat metabolism in human skeletal muscle,” The American Journal of Physiology, vol. 299, pp. E832–E840, 2010. View at Publisher · View at Google Scholar
  145. G. van Hall, A. Steensberg, M. Sacchetti et al., “Interleukin-6 stimulates lipolysis and fat oxidation in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3005–3010, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Ellingsgaard, I. Hauselmann, B. Schuler et al., “Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells,” Nature Medicine, vol. 17, no. 11, pp. 1481–1489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. B. K. Pedersen and M. A. Febbraio, “Muscle as an endocrine organ: focus on muscle-derived interleukin-6,” Physiological Reviews, vol. 88, pp. 1379–1406, 2008. View at Publisher · View at Google Scholar
  148. N. Erdei, Z. Bagi, I. Édes, G. Kaley, and A. Koller, “H2O2 increases production of constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone in Type 2 diabetic mice,” The American Journal of Physiology, vol. 292, no. 1, pp. H649–H656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. B. K. Pedersen, M. A. Febbraio, and R. A. Mooney, “Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis,” Journal of Applied Physiology, vol. 102, no. 2, pp. 814–819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Starkie, S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen, “Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans,” The FASEB Journal, vol. 17, no. 8, pp. 884–886, 2003. View at Google Scholar · View at Scopus
  151. R. Schindler, J. Mancilla, S. Endres, R. Ghorbani, S. C. Clark, and C. A. Dinarello, “Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF,” Blood, vol. 75, no. 1, pp. 40–47, 1990. View at Google Scholar · View at Scopus
  152. H. Mizuhara, E. O'Neill, N. Seki et al., “T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6,” Journal of Experimental Medicine, vol. 179, no. 5, pp. 1529–1537, 1994. View at Google Scholar · View at Scopus
  153. J. Szostak and P. Laurant, “The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity,” Clinical Science, vol. 121, no. 3, pp. 91–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Oberbach, S. Lehmann, K. Kirsch et al., “Long-term exercise training decreases interleukin-6 (IL-6) serum levels in subjects with impaired glucose tolerance: effect of the -174G/C variant in IL-6 gene,” European Journal of Endocrinology, vol. 159, no. 2, pp. 129–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. I. S. Lee, G. Shin, and R. Choue, “Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro-inflammatory cytokines in mice fed a high-fat diet,” Endocrine Journal, vol. 57, no. 1, pp. 39–50, 2010. View at Publisher · View at Google Scholar · View at Scopus